Neurocentre Magendie

Les actualités de l'équipe



Afficher par type


Hottopic
25/11/2020 10h45
Alvaro MORENO from Marsicano's lab will give a presentation entitled ...
2020-11-25 10:45:00 2020-11-25 11:30:00 Europe/Paris Alvaro MORENO 0


Exercise craving potentiates excitatory inputs to ventral tegmental area dopaminergic neurons
Maria‐Carmen Medrano, Imane Hurel, Emma Mesguich, Bastien Redon, Christopher Stevens, François Georges, Miriam Melis, Giovanni Marsicano, Francis Chaouloff
Addiction Biology. 2020-10-05; :


Physical exercise, which can be addictogenic on its own, is considered a therapeutic alternative for drug craving. Exercise might thus share with drugs the ability to strengthen excitatory synapses onto ventral tegmental area (VTA) dopaminergic neurones, as assessed by the ratio of AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) to NMDA receptor (NMDAR)-mediated EPSCs. As did acute cocaine, amphetamine, or Δ9 -tetrahydrocannabinol (THC) pretreatments, an acute 1-h wheel-running session increased the AMPAR/NMDAR ratio in VTA dopaminergic neurones. To dissect the respective influences of wheel-running seeking and performance, mice went through an operant protocol wherein wheel-running was conditioned by nose poking under fixed ratio schedules of reinforcement. Conditioned wheel-running increased the AMPAR/NMDAR ratio to a higher extent than free wheel-running, doing so although running performance was lower in the former paradigm than in the latter. Thus, the cue-reward association, rather than reward consumption, played a major role in this increase. The AMPAR/NMDAR ratio returned to baseline levels in mice that had extinguished the cued-running motivated task, but it increased after a cue-induced reinstatement session. The amplitude of this increase correlated with the intensity of exercise craving, as assessed by individual nose poke scores. Finally, cue-induced reinstatement of running seeking proved insensitive to acute cocaine or THC pretreatments. Our study reveals for the first time that the drive for exercise bears synaptic influences on VTA dopaminergic neurones which are reminiscent of drug actions. Whether these influences play a role in the therapeutic effects of exercise in human drug craving remains to be established.





Luigi Bellocchio (Equipe Marsicano) et al. in eLife

Le cannabis est la drogue illicite dont l'abus est le plus répandu aux États-Unis et dans le monde. En outre, de nombreux États des États-Unis, ainsi que plusieurs pays dans le monde, ont légalisé l'usage médical et/ou récréatif du cannabis. Dans ce paysage de la consommation de cannabis en pleine expansion, d'énormes efforts sont déployés pour trouver des interventions innovantes permettant de réduire les méfaits potentiels du cannabis. Ici, nous avons étudié la relation possible entre les cannabinoïdes et l'autophagie, le processus d'"autodigestion" cellulaire programmée, et nous avons demandé si elle pouvait être liée au contrôle du comportement de coordination motrice, l'un des processus neurobiologiques les mieux établis sur lequel les cannabinoïdes ont un impact.

Nous avons montré que le Δ9-tétrahydrocannabinol, le principal ingrédient psychoactif du cannabis, altère l'autophagie et accumule la protéine P62 dans les neurones du striatum, une zone du cerveau qui joue un rôle clé dans le contrôle de la coordination motrice. Deuxièmement, nous démontrons que le renforcement de l'autophagie, soit par manipulation pharmacologique (avec la cible mammifère de l'inhibiteur de la rapamycine temsirolimus approuvé par la FDA) soit par intervention alimentaire (avec le tréhalose, un disaccharide naturel et non toxique), permet de sauver la déficience de l'autophagie striatale et de la coordination motrice chez la souris induite par le Δ9-tetrahydrocannabinol. En outre, nous apportons la preuve que les récepteurs cannabinoïdes CB1 situés sur les neurones de la voie striatale directe (stratonaire), en se couplant à la cible mammifère de l'activation de la rapamycine et de l'inhibition de l'autophagie, sont indispensables à l'activité de dyscoordination motrice du Δ9-tétrahydrocannabinol chez la souris.

Enfin, grâce à la manipulation génétique à médiation virale des neurones striatonigres, nous avons confirmé que la perturbation de la cible mammifère de la voie de la rapamycine, ainsi que l'augmentation de l'accumulation de P62 dans ces cellules, empêche complètement l'altération de l'autophagie striatale et de la dyscoordination motrice induite par le Δ9-tétrahydrocannabinol chez les souris.

Pris ensemble, ces résultats identifient l'altération de l'autophagie comme un lien mécaniste sans précédent entre les cannabinoïdes et la dyscoordination motrice, et suggèrent que les activateurs de l'autophagie pourraient être considérés comme des outils thérapeutiques prometteurs pour traiter certaines altérations comportementales provoquées par les cannabinoïdes.

Article

Inhibition of striatonigral autophagy as a link between cannabinoid intoxication and impairment of motor coordination. Cristina Blázquez, Andrea Ruiz-Calvo, Raquel Bajo-Grañeras, Jérôme M Baufreton, Eva Resel, Marjorie Varilh, Antonio C Pagano Zottola, Yamuna Mariani, Astrid Cannich, José A Rodríguez-Navarro, Giovanni Marsicano, Ismael Galve-Roperh, Luigi Bellocchio, Manuel Guzmán ; eLife 2020;9:e56811 doi: 10.7554/eLife.56811

https://elifesciences.org/articles/56811






Info Générale
24/07/2020
AAP ESR 2020

3 projets du Neurocentre Magendie lauréats de l'AAP ESR 2020 de la Région Nouvelle Aquitaine pour un total de 333.000€ ! Bravo à Marsicano Lab, A. Beyeler, A. Panatier, V. Deroche et aux collaborateurs de l'Université de Poitiers. Merci au CRNA pour sa confiance en nos travaux.





Cannabis use can lead to effects in the brain that impact the normal functioning of users, including problems in sociability. The present paper - available now online and on July 23rd in press - explores how astrocytes, the most abundant brain cells, play a key role on the metabolic dysfunction associated with high doses of THC which results in decreased sociability in mice. The huge collaborative effort between the teams of Juan Bola–os in Salamanca and the Marsicano team allowed merging the expertise of the spanish team in brain bioenergetics and the expertise of our team in mouse in vivo experiments to better understand a novel way in which cannabinoids affect the brain.

In 2012, we showed that cannabinoid receptors are not only present on the cell membrane, but can also be present at mitochondria, the intracellular organelles whose role is to provide the cells with the energy they need [1]. This new study comes after showing that cannabinoid receptors are also located on the astroglial mitochondrial membranes [2]. These glial cells play a key role in brain energy metabolism as they transform glucose into lactate, which acts as "food" for neurons. Based on this, the paper explores how mitochondrial CB1 receptors impact astroglial bioenergetics both in vitro and in vivo. We first used astrocyte cultures where we observed that persistent activation of mitochondrial cannabinoid receptors destabilizes mitochondrial Complex I through the specific modulation of the phosphorylation status of NDUFS4, a C-I subunit important for its stability. A decrease of Complex stability decreases mitochondrial ROS levels in astrocytes affecting the activity of the transcription factor HIF1, a key regulator of glycolysis which leads to a dysfunction of glucose metabolism with a reduction of astroglial lactate levels. We next used a co-culture strategy to demonstrate that the astroglial bioenergetic alterations produced by the persistent activation of mitochondrial cannabinoid receptors resulted in an enhancement of mitochondrial ROS in neurons, among other bioenergetic alterations. In vivo, we used genetic approaches and NMR and FACS strategies to confirm the effects observed in cell cultures. We show that THC administration in mice reduces glucose-lactate conversion impacting the functioning of neurons by altering similar bioenergetic alterations. Interestingly, THC produces a persistent social interaction impairment still present 24 hours after administration that is not present in mice lacking astroglial CB1 receptors and is reversed by 1) manipulating the phosphorylation status of NDUFS4, 2) reducing neuronal mitochondrial ROS levels or 3) lactate supplementation. These findings not only suggest possible novel therapeutic targets to tackle negative effects of cannabis consumption or other conditions with social impairments, but highlight the fact that the interaction between different brain cells might be also very important to understand how the brain control our actions.

You can check the News and Views written about this study, which summarizes the main points of the paper in a very comprehensive way: https://www.nature.com/articles/d41586-020-01975-5

Contact Giovanni for any questions (Giovanni.marsicano@inserm.fr) and follow our twitter account for updates about publications and other science related events at @Marsicanolab




[1] Bénard, G., Massa, F., Puente, N., Lourenço, J., Bellocchio, L., Soria-Gómez, E., Matias, I., Delamarre, A., Metna-Laurent, M., Cannich, A., Hebert-Chatelain, E., Mulle, C., Ortega-Gutiérrez, S., Martín-Fontecha, M., Klugmann, M., Guggenhuber, S., Lutz, B., Gertsch, J., Chaouloff, F., López-Rodríguez, M. L., … Marsicano, G. (2012). Mitochondrial CB₁ receptors regulate neuronal energy metabolism. Nature neuroscience, 15(4), 558–564. DOI: 10.1038/nn.3053

[2] Gutiérrez-Rodríguez, A., Bonilla-Del Río, I., Puente, N., Gómez-Urquijo, S. M., Fontaine, C. J., Egaña-Huguet, J., Elezgarai, I., Ruehle, S., Lutz, B., Robin, L. M., Soria-Gómez, E., Bellocchio, L., Padwal, J. D., van der Stelt, M., Mendizabal-Zubiaga, J., Reguero, L., Ramos, A., Gerrikagoitia, I., Marsicano, G., & Grandes, P. (2018). Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia, 66(7), 1417–1431. DOI: 10.1002/glia.23314


En 2012, nous avons montré que les récepteurs de cannabinoïdes ne sont pas seulement présents sur la membrane cellulaire, mais qu'ils peuvent également être présents au niveau des mitochondries, les organites intracellulaires dont le rôle est de fournir aux cellules l'énergie dont elles ont besoin [1]. Cette nouvelle étude vient après avoir montré que les récepteurs cannabinoïdes sont également situés sur les membranes mitochondriales astrogliales [2]. Ces cellules gliales jouent un rôle clé dans le métabolisme énergétique du cerveau car elles transforment le glucose en lactate, qui agit comme "nourriture" pour les neurones. Sur cette base, l'article explore comment les récepteurs CB1 mitochondriaux influencent la bioénergétique astrogliale à la fois in vitro et in vivo. Nous avons d'abord utilisé des cultures d'astrocytes où nous avons observé que l'activation persistante des récepteurs cannabinoïdes mitochondriaux déstabilise le complexe I mitochondrial par la modulation spécifique du statut de phosphorylation de NDUFS4, une sous-unité C-I importante pour sa stabilité. Une diminution de la stabilité du Complexe diminue les niveaux de ROS mitochondrial dans les astrocytes, affectant l'activité du facteur de transcription HIF1, un régulateur clé de la glycolyse qui conduit à un dysfonctionnement du métabolisme du glucose avec une réduction des niveaux de lactate astroglial. Nous avons ensuite utilisé une stratégie de co-culture pour démontrer que les altérations bioénergétiques astrogliales produites par l'activation persistante des récepteurs cannabinoïdes mitochondriaux entraînaient une augmentation des ROS mitochondriaux dans les neurones, entre autres altérations bioénergétiques. In vivo, nous avons utilisé des approches génétiques et des stratégies de RMN et de FACS pour confirmer les effets observés dans les cultures cellulaires. Nous montrons que l'administration de THC chez la souris réduit la conversion glucose-lactate ayant un impact sur le fonctionnement des neurones en altérant des altérations bioénergétiques similaires. Il est intéressant de noter que le THC produit un trouble persistant de l'interaction sociale encore présent 24 heures après l'administration, qui n'est pas présent chez les souris dépourvues de récepteurs astrogliaux CB1 et qui est inversé par 1) la manipulation du statut de phosphorylation des NDUFS4, 2) la réduction des niveaux de ROS mitochondriaux neuronaux ou 3) la supplémentation en lactate. Ces résultats suggèrent non seulement de nouvelles cibles thérapeutiques possibles pour lutter contre les effets négatifs de la consommation de cannabis ou d'autres affections présentant des déficiences sociales, mais ils soulignent également le fait que l'interaction entre les différentes cellules du cerveau pourrait être très importante pour comprendre comment le cerveau contrôle nos actions.

Vous pouvez consulter l'article News and Views écris sur cette étude, qui résume les principaux points du papier de manière très complète : https://www.nature.com/articles/d41586-020-01975-5

Contactez Giovanni pour toute question (Giovanni.marsicano@inserm.fr) et suivez notre compte twitter pour des mises à jour sur nôtres publications et autres événements liés à la science sur @Marsicanolab





[1] Bénard, G., Massa, F., Puente, N., Lourenço, J., Bellocchio, L., Soria-Gómez, E., Matias, I., Delamarre, A., Metna-Laurent, M., Cannich, A., Hebert-Chatelain, E., Mulle, C., Ortega-Gutiérrez, S., Martín-Fontecha, M., Klugmann, M., Guggenhuber, S., Lutz, B., Gertsch, J., Chaouloff, F., López-Rodríguez, M. L., … Marsicano, G. (2012). Mitochondrial CB₁ receptors regulate neuronal energy metabolism. Nature neuroscience, 15(4), 558–564. DOI: 10.1038/nn.3053

[2] Gutiérrez-Rodríguez, A., Bonilla-Del Río, I., Puente, N., Gómez-Urquijo, S. M., Fontaine, C. J., Egaña-Huguet, J., Elezgarai, I., Ruehle, S., Lutz, B., Robin, L. M., Soria-Gómez, E., Bellocchio, L., Padwal, J. D., van der Stelt, M., Mendizabal-Zubiaga, J., Reguero, L., Ramos, A., Gerrikagoitia, I., Marsicano, G., & Grandes, P. (2018). Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia, 66(7), 1417–1431. DOI: 10.1002/glia.23314







Des cellules cérébrales en forme d’étoile éclairent le lien entre consommation de cannabis et sociabilité

Revue de presse:
- Communiqué de presse Inserm

- Bordeaux Neurocampus

- France 3 Nouvelle-Aquitaine


La consommation de cannabis peut mener à des changements comportementaux et notamment à une réduction des interactions sociales chez certains individus. Pour mieux comprendre le phénomène, le chercheur Inserm Giovanni Marsicano et son équipe du NeuroCentre Magendie (Inserm/Université de Bordeaux), en collaboration avec l’équipe de Juan Bolaños de l’université de Salamanque, ont identifié pour la première fois chez la souris les mécanismes cérébraux qui sous-tendent la relation entre cannabis et diminution de la sociabilité. Leurs résultats sont publiés dans la revue Nature.

Une exposition régulière au cannabis pourrait avoir un impact délétère sur la sociabilité. Chez certains consommateurs, des études montrent qu’elle entraînerait un repli sur soi et une diminution des interactions sociales. Toutefois, le réseau cérébral et les mécanismes impliqués dans cette relation n’étaient pas bien connus jusqu’ici.

Afin d’en apprendre plus sur le sujet, une équipe de recherche menée par le chercheur Inserm Giovanni Marsicano au NeuroCentre Magendie (Inserm/Université de Bordeaux)[1] s’est alliée avec une équipe espagnole de l’université de Salamanque menée par Juan Bolaños[2].

Plus largement, leurs travaux visent à améliorer les connaissances sur le fonctionnement des récepteurs cannabinoïdes (les récepteurs cérébraux qui interagissent avec les composés chimiques du cannabis).

Dans leur étude publiée dans le journal Nature, les chercheurs montrent qu’après une exposition au cannabis, les changements comportementaux liés à la sociabilité interviennent suite à l’activation de récepteurs cannabinoïdes spécifiques, localisés dans des cellules du système nerveux central appelées astrocytes dont la forme rappelle celle d’une étoile.

Récepteurs cannabinoïdes et mitochondries

Ces résultats sont le fruit de travaux remontant à près d’une décennie. En 2012, Giovanni Marsicano et son équipe avaient en effet fait une découverte surprenante : les récepteurs cannabinoïdes ne sont pas seulement présents sur la membrane des cellules, comme on le croyait jusque-là. Certains de ces récepteurs sont également localisés sur la membrane des mitochondries, les organelles intracellulaires dont le rôle est de fournir aux cellules l’énergie dont elles ont besoin.

Cette nouvelle étude intervient après l’identification par l’équipe de récepteurs cannabinoïdes localisés sur la membrane des mitochondries présentes dans les astrocytes. Entre autres fonctions, ces cellules jouent un rôle très important dans le métabolisme énergétique du cerveau. Elles captent en effet le glucose dans le sang et le métabolisent en lactate, qui agit comme une « nourriture » pour les neurones. « Etant donné l’importance des astrocytes et de l’utilisation de l’énergie pour le fonctionnement cérébral, nous avons voulu comprendre le rôle de ces récepteurs cannabinoïdes bien particuliers, et les conséquences sur le cerveau et sur le comportement lorsqu’ils sont exposés au cannabis », explique Giovanni Marsicano.

Les chercheurs ont alors exposé des souris au cannabinoïde THC, le principal composé psychoactif du cannabis. Ils ont observé que l’activation persistante des récepteurs cannabinoïdes mitochondriaux situés dans les astrocytes entraînait une cascade de processus moléculaires menant à un dysfonctionnement du métabolisme du glucose dans les astrocytes.

En conséquence, la capacité des astrocytes à transformer le glucose en « nourriture » pour les neurones était réduite. En l’absence d’apports énergétiques nécessaires, le fonctionnement des neurones était compromis chez les animaux, avec un impact délétère sur le comportement. Les interactions sociales étaient notamment diminuées et ce jusqu’à 24h après l’exposition au THC.

« Notre étude est la première à montrer que la baisse de sociabilité parfois associée à la consommation de cannabis est la conséquence d’une altération du métabolisme du glucose dans le cerveau. Elle ouvre aussi de nouvelles pistes de recherche pour trouver des solutions thérapeutiques afin de pallier certains des problèmes comportementaux résultant d’une exposition au cannabis. En plus, elle révèle l’impact direct du métabolisme énergétique des astrocytes sur le comportement », précise Giovanni Marsicano.

A l’heure où le débat autour du cannabis thérapeutique revient sur le devant de la scène, les chercheurs estiment aussi que ce type de recherche est nécessaire pour mieux comprendre la manière dont les différents récepteurs cannabinoïdes de l’organisme interagissent avec la drogue, et si certains d’entre eux sont particulièrement associés à des effets délétères. De tels travaux permettraient en effet d’assurer une prise en charge optimale pour les patients qui pourraient avoir recours à ce type de thérapie.



[1] Avec Arnau Busquets-Garcia (maintenant à Barcelone, Espagne) et Etienne Hebert-Chatelain (maintenant à Moncton, Canada)

[2] Avec Daniel Jimenez-Blasco





Ignacio Fernandez Moncada est né loin d’ici, dans la ville colorée de Valparaiso, au Chili, face à l’Océan Pacifique. Il est maintenant post-doctorant au Neurocentre Magendie, dans l’équipe de Giovanni Marsicano. Faisons sa rencontre !




Hottopic
27/05/2020 10h30
Paula Gomez from Marsicano's lab will give a presentation entitled 'CB1 receptor control of social affective behaviors'


Hottopic
26/02/2020 10h00
Gianluca LAVANCO from Marsicano's lab will give a presentation entitled “What is the role of the mitochondrial CB1 receptor in the cannabinoid-induced modulation of learning and memory and synaptic plasticity?”