Liste des publications

Les publications de l'équipe

IF du Neurocentre

43 publications

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en Juin 2019

31/07/2008 | Nature   IF 43.1
Switching on and off fear by distinct neuronal circuits
Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A

Switching between exploratory and defensive behaviour is fundamental to survival of many animals, but how this transition is achieved by specific neuronal circuits is not known. Here, using the converse behavioural states of fear extinction and its context-dependent renewal as a model in mice, we show that bi-directional transitions between states of high and low fear are triggered by a rapid switch in the balance of activity between two distinct populations of basal amygdala neurons. These two populations are integrated into discrete neuronal circuits differentially connected with the hippocampus and the medial prefrontal cortex. Targeted and reversible neuronal inactivation of the basal amygdala prevents behavioural changes without affecting memory or expression of behaviour. Our findings indicate that switching between distinct behavioural states can be triggered by selective activation of specific neuronal circuits integrating sensory and contextual information. These observations provide a new framework for understanding context-dependent changes of fear behaviour.

11/2007 | Neurobiol Learn Mem   IF 3
Biphasic ERK1/2 activation in both the hippocampus and amygdala may reveal a system consolidation of contextual fear memory
Trifilieff P, Calandreau L, Herry C, Mons N, Micheau J

There is accumulating evidences to suggest that memory consolidation in some conditions involves two waves of neuronal plastic change. Using two fear conditioning procedures in male C57BL/6J mice, we have recently shown that consolidation of the foreground contextual fear memory required two waves of ERK1/2 activation in hippocampal CA1, while consolidation of cue conditioning was only associated with the early phase of activation. The present experiment further showed that this bi-phasic pattern of ERK1/2 activation was not restricted to hippocampal CA1, but could also be observed in other fear memory-related brain areas. The unpaired conditioning procedure (context in foreground) induced two waves of ERK1/2 activation in hippocampal CA1 and CA3, as well as in the LA and BLA nuclei of the amygdala. In contrast, the paired conditioning procedure (context in background) led to a transient early phase only in hippocampal CA1 and LA. In addition, ERK1/2 phosphorylation in the hippocampus was found to correlate with that in the amygdala nuclei specifically after the unpaired procedure. Taken together, our data suggest that the observed biphasic pattern of neuronal plastic events may reflect the interplay between hippocampal and amygdala activity-dependent plasticity critical for the system consolidation of contextual fear memory.

30/05/2007 | J Neurosci   IF 6.1
Processing of temporal unpredictability in human and animal amygdala
Herry C, Bach D R, Esposito F, Di Salle F, Perrig W J, Scheffler K, Luthi A, Seifritz E

The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.

08/2006 | Nat Neurosci   IF 21.1
Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition
Shaban H, Humeau Y, Herry C, Cassasus G, Shigemoto R, Ciocchi S, Barbieri S, van der Putten H, Kaupmann K, Bettler B, Luthi A

Pavlovian fear conditioning, a simple form of associative learning, is thought to involve the induction of associative, NMDA receptor-dependent long-term potentiation (LTP) in the lateral amygdala. Using a combined genetic and electrophysiological approach, we show here that lack of a specific GABA(B) receptor subtype, GABA(B(1a,2)), unmasks a nonassociative, NMDA receptor-independent form of presynaptic LTP at cortico-amygdala afferents. Moreover, the level of presynaptic GABA(B(1a,2)) receptor activation, and hence the balance between associative and nonassociative forms of LTP, can be dynamically modulated by local inhibitory activity. At the behavioral level, genetic loss of GABA(B(1a)) results in a generalization of conditioned fear to nonconditioned stimuli. Our findings indicate that presynaptic inhibition through GABA(B(1a,2)) receptors serves as an activity-dependent constraint on the induction of homosynaptic plasticity, which may be important to prevent the generalization of conditioned fear.

07/2006 | Eur J Neurosci   IF 2.8
Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala
Herry C, Trifilieff P, Micheau J, Luthi A, Mons N

Whereas the neuronal substrates underlying the acquisition of auditory fear conditioning have been widely studied, the substrates and mechanisms mediating the acquisition of fear extinction remain largely elusive. Previous reports indicate that consolidation of fear extinction depends on the mitogen-activated protein kinase/extracellular-signal regulated kinase (MAPK/ERK) signalling pathway and on protein synthesis in the medial prefrontal cortex (mPFC). Based on experiments using the fear-potentiated startle paradigm suggesting a role for neuronal plasticity in the basolateral amygdala (BLA) during fear extinction, we directly addressed whether MAPK/ERK signalling in the basolateral amygdala is necessary for the acquisition of fear extinction using conditioned freezing as a read-out. First, we investigated the regional and temporal pattern of MAPK/ERK activation in the BLA following extinction learning in C57Bl/6J mice. Our results indicate that acquisition of extinction is associated with an increase of phosphorylated MAPK/ERK in the BLA. Moreover, we found that inhibition of the MAPK/ERK signalling pathway by intrabasolateral amygdala infusion of the MEK inhibitor, U0126, completely blocks acquisition of extinction. Thus, our results indicate that the MAPK/ERK signalling pathway is required for extinction of auditory fear conditioning in the BLA, and support a role for neuronal plasticity in the BLA during the acquisition of fear extinction.

2006 | Learn Mem   IF 2.4
Foreground contextual fear memory consolidation requires two independent phases of hippocampal ERK/CREB activation
Trifilieff P, Herry C, Vanhoutte P, Caboche J, Desmedt A, Riedel G, Mons N, Micheau J

Fear conditioning is a popular model for investigating physiological and cellular mechanisms of memory formation. In this paradigm, a footshock is either systematically associated to a tone (paired conditioning) or is pseudorandomly distributed (unpaired conditioning). In the former procedure, the tone/shock association is acquired, whereas in the latter procedure, the context/shock association will prevail. Animals with chronically implanted recording electrodes show enhanced amplitude of the extracellularly recorded field EPSP in CA1 pyramidal cells for up to 24 h after unpaired, but not paired, fear conditioning. This is paralleled by a differential activation of the ERK/CREB pathway in CA1, which is monophasic in paired conditioning (0-15 min post-conditioning), but biphasic (0-1 h and 9-12 h post-conditioning) in unpaired conditioning as revealed by immunocytochemistry and Western blotting. Intrahippocampal injection of the MEK inhibitor U0126 prior to each phase prevents the activation of both ERK1/2 and CREB after unpaired conditioning. Block of any activation phase leads to memory impairment. We finally reveal that the biphasic activation of ERK/CREB activity is independently regulated, yet both phases are critically required for the consolidation of long-term memories following unpaired fear conditioning. These data provide compelling evidence that CA1 serves different forms of memory by expressing differential cellular mechanisms that are dependent on the training regime.

06/01/2005 | Neuron   IF 14.4
Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala
Humeau Y, Herry C, Kemp N, Shaban H, Fourcaudot E, Bissiere S, Luthi A

Functional compartmentalization of dendrites is thought to underlie afferent-specific integration of neural activity in laminar brain structures. Here we show that in the lateral nucleus of the amygdala (LA), an area lacking apparent laminar organization, thalamic and cortical afferents converge on the same dendrites, contacting neighboring but morphologically and functionally distinct spine types. Large spines contacted by thalamic afferents exhibited larger Ca(2+) transients during action potential backpropagation than did small spines contacted by cortical afferents. Accordingly, induction of Hebbian plasticity, dependent on postsynaptic spikes, was restricted to thalamic afferents. This synapse-specific effect involved activation of R-type voltage-dependent Ca(2+) channels preferentially located at thalamic inputs. These results indicate that afferent-specific mechanisms of postsynaptic, associative Hebbian plasticity in LA projection neurons depend on local, spine-specific morphological and molecular properties, rather than global differences between dendritic compartments.

Extinction of classical fear conditioning is thought to involve activity-dependent potentiation of synaptic transmission in the medial prefrontal cortex (mPFC), resulting in the inhibition of amygdala-dependent fear responses. While many studies have addressed the mechanisms underlying extinction learning, it is unclear what determines whether extinction memory is consolidated or whether spontaneous recovery of the fear response occurs. Here we show, using a combined electrophysiological and immunocytochemical approach, that spontaneous recovery of conditioned fear in mice is associated with a prolonged expression of long-term depression of synaptic transmission in the mPFC and the failure of induction of the immediate-early genesc-Fos and zif268 in the mPFC and the basolateral nucleus of the amygdala. This suggests that coordinated activity-dependent changes in gene expression in the mPFC and the amygdala may underlie the formation of long-term fear extinction memory.

Accumulative evidence indicates that acute (before extinction) and long-lasting (during extinction) depression can occur at excitatory synapses in mouse medial prefrontal cortex (mPFC) during re-exposure to a tone (conditioned stimulus: CS), previously paired with footshock (unconditioned stimulus: US). As recently shown, the long-term depression (LTD)-like plasticity in the mPFC does not interfere with extinction of CS-evoked freezing but predicts spontaneous recovery of this fear response. Here, the objectives were to investigate: (i). whether a resistance to extinction without any prefrontal acute synaptic plasticity could produce LTD-like changes, and (ii). by the use of paired-pulse facilitation (PPF) analyses, whether pre- or post-synaptic mechanisms were involved in this LTD phenomenon. Preliminary analyses indicated that levels of acute depression did not correlate with the degree of fear acquisition (effects of number of CS-US pairings). As a consequence, mice conditioned with 2CS+ or 2CS+/2CS- (partial reinforcement of the CS known to induce resistance to extinction) exhibited CS-associated freezing without any acute synaptic depression in the mPFC. However, during further CS-alone presentations, the 2CS+/2CS- group developed LTD-like changes that accompanied their resistance to extinguish freezing to the CS. In contrast, the 2CS+ group normally extinguished their conditioned freezing with synaptic transmission remaining at baseline levels. PPF analyses revealed that facilitation was unchanged following prefrontal LTD. These data, combined with our previous findings, (i). support a critical involvement of prefrontal LTD-like changes in spontaneous recovery of fear responses, and (ii). suggest a post-synaptic site for these changes.