Publications du Neurocentre Magendie

Les publications







IF du Neurocentre
IF1234567891011121314151617181920253035404550
Nombre00124445333016975796883314074601
%00266543211121221111011101


782 publications

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en Juin 2020



01/06/2017 | Neuropharmacology   IF 5
Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits.
Lau BK, Cota D, Cristino L, Borgland SL

Abstract:
The endocannabinoid system has emerged as a key player in the control of eating. Endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide (AEA), modulate neuronal activity via cannabinoid 1 receptors (CB1Rs) in multiple nuclei of the hypothalamus to induce or inhibit food intake depending on nutritional and hormonal status, suggesting that endocannabinoids may act in the hypothalamus to integrate different types of signals informing about the animal's energy needs. In the mesocorticolimbic system, (endo)cannabinoids modulate synaptic transmission to promote dopamine release in response to palatable food. In addition, (endo)cannabinoids act within the nucleus accumbens to increase food's hedonic impact; although this effect depends on activation of CB1Rs at excitatory, but not inhibitory inputs in the nucleus accumbens. While hyperactivation of the endocannabinoid system is typically associated with overeating and obesity, much evidence has emerged in recent years suggesting a more complicated system than first thought - endocannabinoids promote or suppress feeding depending on cell and input type, or modulation by various neuronal or hormonal signals. This review presents our latest knowledge of the endocannabinoid system in non-homeostatic and homeostatic feeding circuits. In particular, we discuss the functional role and cellular mechanism of action by endocannabinoids within the hypothalamus and mesocorticolimbic system, and how these are modulated by neuropeptide signals related to feeding. In light of recent advances and complexity in the field, we review cannabinoid-based therapeutic strategies for the treatment of obesity and how peripheral restriction of CB1R antagonists may provide a different mechanism of weight loss without the central adverse effects.





06/2017 | Nat Neurosci   IF 17.8
Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment.
Burgos-Robles A, Kimchi EY, Izadmehr EM, Porzenheim MJ, Ramos-Guasp WA, Nieh EH, Felix-Ortiz AC, Namburi P, Leppla CA, Presbrey KN, Anandalingam KK, Pagan-Rivera PA, Anahtar M, Beyeler A, Tye KM

Abstract:
Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral nucleus of the amygdala (BLA) and prelimbic (PL) medial prefrontal cortex have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task wherein competing shock- and sucrose-predictive cues were simultaneously presented. The correlated firing primarily displayed a BLA-->PL directionality during the shock-associated cue. Furthermore, BLA neurons optogenetically identified as projecting to PL more accurately predicted behavioral responses during competition than unidentified BLA neurons. Finally photostimulation of the BLA-->PL projection increased freezing, whereas both chemogenetic and optogenetic inhibition reduced freezing. Therefore, the BLA-->PL circuit is critical in governing the selection of behavioral responses in the face of competing signals.





06/2017 | Med Sci (Paris)
[Mitochondria link between cannabinoid and memory].
Hebert-Chatelain E, Marsicano G



09/05/2017 | Mol Psychiatry   IF 13.2
Inducing a long-term potentiation in the dentate gyrus is sufficient to produce rapid antidepressant-like effects.
Kanzari A, Bourcier-Lucas C, Freyssin A, Abrous DN, Haddjeri N, Lucas G

Abstract:
Recent hypotheses propose that one prerequisite to obtain a rapid antidepressant (AD) effect would reside in processes of synaptic reinforcement occurring within the dentate gyrus (DG) of the hippocampus independently from neurogenesis. However, to date no relationship has been established between an increased DG synaptic plasticity, and rapid AD-like action. To the best of our knowledge, this study shows for the first time that inducing a long-term potentiation (LTP) within the DG by stimulating the perforant pathway (PP) is sufficient to induce such effects. Thus, Sprague-Dawley rats having undergone a successful LTP displayed a significant reduction of immobility when passed acutely 3 days thereafter in the forced swimming test (FST). Further, in a longitudinal paradigm using the pseudo-depressed Wistar-Kyoto rat strain, LTP elicited a decrease of FST immobility after only 2 days, whereas the AD desipramine was not effective before 16 days. In both models, the influence of LTP was transient, as it was no more observed after 8-9 days. No effects were observed on the locomotor activity or on anxiety-related behavior. Theta-burst stimulation of a brain region anatomically adjacent to the PP remained ineffective in the FST. Immunoreactivity of DG cells for phosphorylated histone H3 and doublecortin were not modified three days after LTP, indicating a lack of effect on both cell proliferation and neurogenesis. Finally, depleting brain serotonin contents reduced the success rate of LTP but did not affect its subsequent AD-like effects. These results confirm the 'plastic DG' theory of rapid AD efficacy. Beyond, they point out stimulations of the entorhinal cortex, from which the PP originates, as putative new approaches in AD research.Molecular Psychiatry advance online publication, 9 May 2017; doi:10.1038/mp.2017.94.





05/2017 | Eur J Neurosci   IF 2.9
Species-specific diversity in the anatomical and physiological organisation of the BNST-VTA pathway.
Kaufling J, Girard D, Maitre M, Leste-Lasserre T, Georges F

Abstract:
The anteromedial part of the bed nucleus of the stria terminalis (amBNST) is a limbic structure innervating the ventral tegmental area (VTA) that is remarkably constant across species. The amBNST modulates fear and anxiety, and activation of VTA dopamine (DA) neurons by amBNST afferents seems to be the way by which stress controls motivational states associated with reward or aversion. Because fear learning and anxiety states can be expressed differently between rats and mice, we compared the functional connectivity between amBNST and the VTA-DA neurons in both species using consistent methodological approaches. Using a combination of in vivo electrophysiological, neuroanatomical tracing and laser capture approaches we explored the BNST influences on VTA-DA neuron activity. First, we characterised in rats the molecular phenotype of the amBNST neurons projecting to the VTA. We found that this projection is complex, including both GABAergic and glutamatergic neurons. Then, VTA injections of a conventional retrograde tracer, the beta-sub-unit of the cholera toxin (CTB), revealed a stronger BNST-VTA projection in mice than in rats. Finally, electrical stimulations of the BNST during VTA-DA neuron recording demonstrated a more potent excitatory influence of the amBNST on VTA-DA neuron activity in rats than in mice. These data illustrate anatomically, but also functionally, a significant difference between rats and mice in the amBNST-VTA pathway. More generally, together with previous findings, our research highlights the importance of species differences for the interpretation and the generalisation of research data.





10/04/2017 | Nat Neurosci   IF 17.8
Abnormal wiring of CCK+ basket cells disrupts spatial information coding.
Del Pino I, Brotons-Mas JR, Marques-Smith A, Marighetto A, Frick A, Marin O, Rico B

Abstract:
The function of cortical GABAergic interneurons is largely determined by their integration into specific neural circuits, but the mechanisms controlling the wiring of these cells remain largely unknown. This is particularly true for a major population of basket cells that express the neuropeptide cholecystokinin (CCK). Here we found that the tyrosine kinase receptor ErbB4 was required for the normal integration into cortical circuits of basket cells expressing CCK and vesicular glutamate transporter 3 (VGlut3). The number of inhibitory synapses made by CCK+VGlut3+ basket cells and the inhibitory drive they exerted on pyramidal cells were reduced in conditional mice lacking ErbB4. Developmental disruption of the connectivity of these cells diminished the power of theta oscillations during exploratory behavior, disrupted spatial coding by place cells, and caused selective alterations in spatial learning and memory in adult mice. These results suggest that normal integration of CCK+ basket cells in cortical networks is key to support spatial coding in the hippocampus.





07/04/2017 | Nat Commun   IF 12.1
Defective Gpsm2/Galphai3 signalling disrupts stereocilia development and growth cone actin dynamics in Chudley-McCullough syndrome.
Mauriac SA, Hien YE, Bird JE, Carvalho SD, Peyroutou R, Lee SC, Moreau MM, Blanc JM, Geyser A, Medina C, Thoumine O, Beer-Hammer S, Friedman TB, Ruttiger L, Forge A, Nurnberg B*, Sans N*, Montcouquiol M*

Abstract:
Mutations in GPSM2 cause Chudley-McCullough syndrome (CMCS), an autosomal recessive neurological disorder characterized by early-onset sensorineural deafness and brain anomalies. Here, we show that mutation of the mouse orthologue of GPSM2 affects actin-rich stereocilia elongation in auditory and vestibular hair cells, causing deafness and balance defects. The G-protein subunit Galphai3, a well-documented partner of Gpsm2, participates in the elongation process, and its absence also causes hearing deficits. We show that Gpsm2 defines an approximately 200 nm nanodomain at the tips of stereocilia and this localization requires the presence of Galphai3, myosin 15 and whirlin. Using single-molecule tracking, we report that loss of Gpsm2 leads to decreased outgrowth and a disruption of actin dynamics in neuronal growth cones. Our results elucidate the aetiology of CMCS and highlight a new molecular role for Gpsm2/Galphai3 in the regulation of actin dynamics in epithelial and neuronal tissues.





01/04/2017 | Biol Psychiatry   IF 11.4
CB1 Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal.
Saravia R, Flores A, Plaza-Zabala A, Busquets-Garcia A, Pastor A, de la Torre R, Di Marzo V, Marsicano G, Ozaita A, Maldonado R, Berrendero F

Abstract:
BACKGROUND: Tobacco withdrawal is associated with deficits in cognitive function, including attention, working memory, and episodic memory. Understanding the neurobiological mechanisms involved in these effects is crucial because cognitive deficits during nicotine withdrawal may predict relapse in humans. METHODS: We investigated in mice the role of CB1 cannabinoid receptors (CB1Rs) in memory impairment and spine density changes induced by nicotine withdrawal precipitated by the nicotinic antagonist mecamylamine. Drugs acting on the endocannabinoid system and genetically modified mice were used. RESULTS: Memory impairment during nicotine withdrawal was blocked by the CB1R antagonist rimonabant or the genetic deletion of CB1R in forebrain gamma-aminobutyric acidergic (GABAergic) neurons (GABA-CB1R). An increase of 2-arachidonoylglycerol (2-AG), but not anandamide, was observed during nicotine withdrawal. The selective inhibitor of 2-AG biosynthesis O7460 abolished cognitive deficits of nicotine abstinence, whereas the inhibitor of 2-AG enzymatic degradation JZL184 did not produce any effect in cognitive impairment. Moreover, memory impairment was prevented by the selective mammalian target of rapamycin inhibitor temsirolimus and the protein synthesis inhibitor anisomycin. Mature dendritic spines on CA1 pyramidal hippocampal neurons decreased 4 days after the precipitation of nicotine withdrawal, when the cognitive deficits were still present. Indeed, a correlation between memory performance and mature spine density was found. Interestingly, these structural plasticity alterations were normalized in GABA-CB1R conditional knockout mice and after subchronic treatment with rimonabant. CONCLUSIONS: These findings underline the interest of CB1R as a target to improve cognitive performance during early nicotine withdrawal. Cognitive deficits in early abstinence are associated with increased relapse risk.





27/03/2017 | Development   IF 5.8
Wnts contribute to neuromuscular junction formation through distinct signaling pathways.
Messeant J, Ezan J, Delers P, Glebov K, Marchiol C, Lager F, Renault G, Tissir F, Montcouquiol M, Sans N, Legay C, Strochlic L

Abstract:
Understanding the developmental steps shaping the formation of the neuromuscular junction (NMJ) connecting motoneurons to skeletal muscle fibers, is critical. Wnt morphogens are key players in the formation of this specialized peripheral synapse. Yet, the individual and collaborative functions of Wnts as well as their downstream pathways remain poorly understood at the NMJ. Here, we demonstrate through Wnt4 and Wnt11 gain of function studies in culture or in mice that Wnts enhance acetylcholine receptor (AChR) clustering and motor axon outgrowth. In contrast, loss of Wnt11 or Wnt-dependent signaling in vivo decreases AChR clustering and motor nerve terminal branching. Both Wnt4 and Wnt11 stimulate AChR clustering and mRNA downstream activation of the beta-catenin pathway. Strikingly, Wnt4 and Wnt11 co-immunoprecipitate with Vangl2, a core component of the Planar Cell Polarity (PCP) pathway, which accumulates at embryonic NMJ. Moreover, mice bearing a Vangl2 loss of function mutation (looptail) exhibit a decreased number of AChR clusters and overgrowth of motor axons bypassing AChR clusters. Taken together, our results provide genetic and biochemical evidences that Wnt4 and Wnt11 cooperatively contribute to mammalian NMJ formation through activation of both the canonical and Vangl2-dependent core PCP pathways.





22/03/2017 | Neuron   IF 14
The CB1 Receptor as the Cornerstone of Exostasis.
Piazza PV, Cota D, Marsicano G

Abstract:
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.





17/03/2017 | acs chem biol   IF 5
Chemical Proteomics Maps Brain Region Specific Activity of Endocannabinoid Hydrolases.
Baggelaar MP, van Esbroeck AC, van Rooden EJ, Florea BI, Overkleeft HS, Marsicano G, Chaouloff F, van der Stelt M

Abstract:
The biosynthetic and catabolic enzymes of the endocannabinoids tightly regulate endocannabinoid-mediated activation of the cannabinoid CB1 receptor. Monitoring the activities of these endocannabinoid hydrolases in different brain regions is, therefore, key to gaining insight into spatiotemporal control of CB1 receptor-mediated physiology. We have employed a comparative chemical proteomics approach to quantitatively map the activity profile of endocannabinoid hydrolases in various mouse brain regions at the same time. To this end, we used two different activity-based probes: fluorophosphonate-biotin (FP-biotin), which quantifies FAAH, ABHD6, and MAG-lipase activity, and MB108, which detects DAGL-alpha, ABHD4, ABHD6, and ABHD12. In total, 32 serine hydrolases were evaluated in the frontal cortex, hippocampus, striatum, and cerebellum. Comparison of endocannabinoid hydrolase activity in the four brain regions revealed that FAAH activity was highest in the hippocampus, and MAGL activity was most pronounced in the frontal cortex, whereas DAGL-alpha was most active in the cerebellum. Comparison of the activity profiles with a global proteomics data set revealed pronounced differences. This could indicate that post-translational modification of the endocannabinoid hydrolases is important to regulate their activity. Next, the effect of genetic deletion of the CB1 receptor was studied. No difference in the enzymatic activity was found in the cerebellum, striatum, frontal cortex, and hippocampus of CB1 receptor knockout animals compared to wild type mice. Our results are in line with previous reports and indicate that the CB1 receptor exerts no regulatory control over the basal production and degradation of endocannabinoids and that genetic deletion of the CB1 receptor does not induce compensatory mechanisms in endocannabinoid hydrolase activity.





03/2017 | Glia   IF 6.2
Astrocytic IP3 Rs: Contribution to Ca2+ signalling and hippocampal LTP.
Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, Sherwood JL, Panatier A, Oliet SH, Mikoshiba K

Abstract:
Astrocytes regulate hippocampal synaptic plasticity by the Ca2+ dependent release of the N-methyl d-aspartate receptor (NMDAR) co-agonist d-serine. Previous evidence indicated that d-serine release would be regulated by the intracellular Ca2+ release channel IP3 receptor (IP3 R), however, genetic deletion of IP3 R2, the putative astrocytic IP3 R subtype, had no impact on synaptic plasticity or transmission. Although IP3 R2 is widely believed to be the only functional IP3 R in astrocytes, three IP3 R subtypes (1, 2, and 3) have been identified in vertebrates. Therefore, to better understand gliotransmission, we investigated the functionality of IP3 R and the contribution of the three IP3 R subtypes to Ca2+ signalling. As a proxy for gliotransmission, we found that long-term potentiation (LTP) was impaired by dialyzing astrocytes with the broad IP3 R blocker heparin, and rescued by exogenous d-serine, indicating that astrocytic IP3 Rs regulate d-serine release. To explore which IP3 R subtypes are functional in astrocytes, we used pharmacology and two-photon Ca2+ imaging of hippocampal slices from transgenic mice (IP3 R2-/- and IP3 R2-/- ;3-/- ). This approach revealed that underneath IP3 R2-mediated global Ca2+ events are an overlooked class of IP3 R-mediated local events, occurring in astroglial processes. Notably, multiple IP3 Rs were recruited by high frequency stimulation of the Schaffer collaterals, a classical LTP induction protocol. Together, these findings show the dependence of LTP and gliotransmission on Ca2+ release by astrocytic IP3 Rs. GLIA 2017;65:502-513.





Abstract:
The endocannabinoid system (ECS), including cannabinoid type 1 and type 2 receptors (CB1R and CB2R), endogenous ligands called endocannabinoids and their related enzymatic machinery, is known to have a role in the regulation of energy balance. Past information generated on the ECS, mainly focused on the involvement of this system in the central nervous system regulation of food intake, while at the same time clinical studies pointed out the therapeutic efficacy of brain-penetrant CB1R antagonists like rimonabant for obesity and metabolic disorders. Rimonabant was removed from the market in 2009 and its obituary written due to its psychiatric side effects. However, in the meanwhile a number of investigations had started to highlight the roles of the peripheral ECS in the regulation of metabolism, bringing up new hope that the ECS might still represent target for treatment. Accordingly, peripherally-restricted CB1R antagonists or inverse agonists have shown to effectively reduce body weight, adiposity, insulin resistance and dyslipidemia in obese animal models. Very recent investigations have further expanded the possible toolbox for the modulation of the ECS, by demonstrating the existence of endogenous allosteric inhibitors of CB1R, the characterization of the structure of the human CB1R, and the likely involvement of CB2R in metabolic disorders. Here we give an overview of these findings, discussing what the future may hold in the context of strategies targeting the ECS in metabolic disease.





Abstract:
KEY POINTS: Vagal sensory inputs transmit information from the viscera to brainstem neurones located in the nucleus tractus solitarii to set physiological parameters. These excitatory synapses exhibit a CB1 endocannabinoid-induced long-term depression (LTD) triggered by vagal fibre stimulation. We investigated the impact of nutritional status on long-term changes in this long-term synaptic plasticity. Food deprivation prevents LTD induction by disrupting CB1 receptor signalling. Short-term refeeding restores the capacity of vagal synapses to express LTD. Ghrelin and cholecystokinin, respectively released during fasting and refeeding, play a key role in the control of LTD via the activation of energy sensing pathways such as AMPK and the mTOR and ERK pathways. ABSTRACT: Communication form the viscera to the brain is essential to set physiological homoeostatic parameters but also to drive more complex behaviours such as mood, memory and emotional states. Here we investigated the impact of the nutritional status on long-term changes in excitatory synaptic transmission in the nucleus tractus solitarii, a neural hub integrating visceral signals. These excitatory synapses exhibit a CB1 endocannabinoid (eCB)-induced long-term depression (LTD) triggered by vagal fibre stimulation. Since eCB signalling is known to be an important component of homoeostatic regulation of the body and is regulated during various stressful conditions, we tested the hypothesis that food deprivation alters eCB signalling in central visceral afferent fibres. Food deprivation prevents eCB-LTD induction due to the absence of eCB signalling. This loss was reversed by blockade of ghrelin receptors. Activation of the cellular fuel sensor AMP-activated protein kinase or inhibition of the mechanistic target of rapamycin pathway abolished eCB-LTD in free-fed rats. Signals associated with energy surfeit, such as short-term refeeding, restore eCB-LTD induction, which in turn requires activation of cholecystokinin receptors and the extracellular signal-regulated kinase pathway. These data suggest a tight link between eCB-LTD in the NTS and nutritional status and shed light on the key role of eCB in the integration of visceral information.





21/02/2017 | Mol Psychiatry   IF 13.2
Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice.
Busquets-Garcia A, Soria-Gomez E, Redon B, Mackenbach Y, Vallee M, Chaouloff F, Varilh M, Ferreira G, Piazza PV, Marsicano G

Abstract:
Cannabis-induced acute psychotic-like states (CIAPS) represent a growing health issue, but their underlying neurobiological mechanisms are poorly understood. The use of antipsychotics and benzodiazepines against CIAPS is limited by side effects and/or by their ability to tackle only certain aspects of psychosis. Thus, safer wide-spectrum treatments are currently needed. Although the blockade of cannabinoid type-1 receptor (CB1) had been suggested as a therapeutical means against CIAPS, the use of orthosteric CB1 receptor full antagonists is strongly limited by undesired side effects and low efficacy. The neurosteroid pregnenolone has been recently shown to act as a potent endogenous allosteric signal-specific inhibitor of CB1 receptors. Thus, we tested in mice the potential therapeutic use of pregnenolone against acute psychotic-like effects of Delta9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. We found that pregnenolone blocks a wide spectrum of THC-induced endophenotypes typically associated with psychotic-like states, including impairments in cognitive functions, somatosensory gating and social interaction. In order to capture THC-induced positive psychotic-like symptoms (e.g. perceptual delusions), we adapted a behavioral paradigm based on associations between different sensory modalities and selective devaluation, allowing the measurement of mental sensory representations in mice. Acting at hippocampal CB1 receptors, THC impaired the correct processing of mental sensory representations (reality testing) in an antipsychotic- and pregnenolone-sensitive manner. Overall, this work reveals that signal-specific inhibitors mimicking pregnenolone effects can be considered as promising new therapeutic tools to treat CIAPS.Molecular Psychiatry advance online publication, 21 February 2017; doi:10.1038/mp.2017.4.





14/02/2017 | oncotarget   IF 5.2
What influences preneoplastic colorectal lesion recurrence?
De Maio G, Zama E, Rengucci C, Calistri D

Abstract:
The hypothesis of the local recurrence of preneoplastic lesions was first put forward in the 1950s. Disease recurrence may result from an inherent imbalance in cell proliferation that promotes carcinogenesis in apparently normal mucosa. Our review sheds light on how early preneoplastic lesions could be used to diagnose relapsed preneoplastic and, developing neoplastic lesions. We focus in detail on the clinical-pathological and molecular features of adenoma subtypes and their role in relapsed adenoma and their development into colorectal carcinoma. Moreover, we include the data available on microbiota and its metabolites and their role in recurrence. We strongly believe that a significant improvement could be achieved in colorectal screening by introducing personalized endoscopic surveillance for polyp-bearing patients on the basis of the presence of molecular markers that are predictive of recurrence.





02/02/2017 | J Neurosci Res   IF 2.5
Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission.
Murphy-Royal C, Dupuis J, Groc L, Oliet SH

Abstract:
Astrocytes, the major glial cell type in the central nervous system (CNS), are critical for brain function and have been implicated in various disorders of the central nervous system. These cells are involved in a wide range of cerebral processes including brain metabolism, control of central blood flow, ionic homeostasis, fine-tuning synaptic transmission, and neurotransmitter clearance. Such varied roles can be efficiently carried out due to the intimate interactions astrocytes maintain with neurons, the vasculature, as well as with other glial cells. Arguably, one of the most important functions of astrocytes in the brain is their control of neurotransmitter clearance. This is particularly true for glutamate whose timecourse in the synaptic cleft needs to be controlled tightly under physiological conditions to maintain point-to-point excitatory transmission, thereby limiting spillover and activation of more receptors. Most importantly, accumulation of glutamate in the extracellular space can trigger excessive activation of glutamatergic receptors and lead to excitotoxicity, a trademark of many neurodegenerative diseases. It is thus of utmost importance for both physiological and pathophysiological reasons to understand the processes that control glutamate time course within the synaptic cleft and regulate its concentrations in the extracellular space. (c) 2017 Wiley Periodicals, Inc.





01/02/2017 | Endocrinology   IF 4.3
Islet Endothelial Cell: Friend and Foe.
Mazier W, Cota D



01/02/2017 | J Comp Neurol   IF 3.3
Anatomical characterization of the cannabinoid CB1 receptor in cell-type-specific mutant mouse rescue models.
Gutierrez-Rodriguez A, Puente N, Elezgarai I, Ruehle S, Lutz B, Reguero L, Gerrikagoitia I, Marsicano G, Grandes P

Abstract:
Type 1 cannabinoid (CB1 ) receptors are widely distributed in the brain. Their physiological roles depend on their distribution pattern, which differs remarkably among cell types. Hence, subcellular compartments with little but functionally relevant CB1 receptors can be overlooked, fostering an incomplete mapping. To overcome this, knockin mice with cell-type-specific rescue of CB1 receptors have emerged as excellent tools for investigating CB1 receptors' cell-type-specific localization and sufficient functional role with no bias. However, to know whether these rescue mice maintain endogenous CB1 receptor expression level, detailed anatomical studies are necessary. The subcellular distribution of hippocampal CB1 receptors of rescue mice that express the gene exclusively in dorsal telencephalic glutamatergic neurons (Glu-CB1 -RS) or GABAergic neurons (GABA-CB1 -RS) was studied by immunoelectron microscopy. Results were compared with conditional CB1 receptor knockout lines. As expected, CB1 immunoparticles appeared at presynaptic plasmalemma, making asymmetric and symmetric synapses. In the hippocampal CA1 stratum radiatum, the values of the CB1 receptor-immunopositive excitatory and inhibitory synapses were Glu-CB1 -RS, 21.89% (glutamatergic terminals); 2.38% (GABAergic terminals); GABA-CB1 -RS, 1.92% (glutamatergic terminals); 77.92% (GABAergic terminals). The proportion of CB1 receptor-immunopositive excitatory and inhibitory synapses in the inner one-third of the dentate molecular layer was Glu-CB1 -RS, 53.19% (glutamatergic terminals); 2.30% (GABAergic terminals); GABA-CB1 -RS, 3.19% (glutamatergic terminals); 85.07% (GABAergic terminals). Taken together, Glu-CB1 -RS and GABA-CB1 -RS mice show the usual CB1 receptor distribution and expression in hippocampal cell types with specific rescue of the receptor, thus being ideal for in-depth anatomical and functional investigations of the endocannabinoid system. J. Comp. Neurol. 525:302-318, 2017. (c) 2016 Wiley Periodicals, Inc.





02/2017 | Neuropsychopharmacology   IF 6.4
Individual Variations in the Mechanisms of Nicotine Seeking: A Key for Research on Nicotine Dependence.
Garcia-Rivas V, Cannella N, Deroche-Gamonet V



12/01/2017 | Cell   IF 30.4
Blood on the Tracks: Two Pathways for Predation.
Rozeske RR, Herry C

Abstract:
Accurate predatory behavior requires coordination between pursuit activity and prey consumption, yet the underlying neuronal circuits are unknown. A novel study published in this issue of Cell identifies two coordinated circuits emanating from the central amygdala that control the efficiency of prey capture and the ability to deliver fatal bites to prey.





2017 | Methods Mol Biol
Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity.
Haberl MG, Ginger M, Frick A

Abstract:
Current large-scale approaches in neuroscience aim to unravel the complete connectivity map of specific neuronal circuits, or even the entire brain. This emerging research discipline has been termed connectomics. Recombinant glycoprotein-deleted rabies virus (RABV G) has become an important tool for the investigation of neuronal connectivity in the brains of a variety of species. Neuronal infection with even a single RABV G particle results in high-level transgene expression, revealing the fine-detailed morphology of all neuronal features-including dendritic spines, axonal processes, and boutons-on a brain-wide scale. This labeling is eminently suitable for subsequent post-hoc morphological analysis, such as semiautomated reconstruction in 3D. Here we describe the use of a recently developed anterograde RABV G variant together with a retrograde RABV G for the investigation of projections both to, and from, a particular brain region. In addition to the automated reconstruction of a dendritic tree, we also give as an example the volume measurements of axonal boutons following RABV G-mediated fluorescent marker expression. In conclusion RABV G variants expressing a combination of markers and/or tools for stimulating/monitoring neuronal activity, used together with genetic or behavioral animal models, promise important insights in the structure-function relationship of neural circuits.





2017 | front mol neurosci   IF 5.1
Differential Alteration in Expression of Striatal GABAAR Subunits in Mouse Models of Huntington's Disease.
Du Z, Tertrais M, Courtand G, Leste-Lasserre T, Cardoit L, Masmejean F, Halgand C, Cho YH, Garret M

Abstract:
Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor symptoms that are preceded by cognitive deficits and is considered as a disorder that primarily affects forebrain striatal neurons. To gain a better understanding of the molecular and cellular mechanisms associated with disease progression, we analyzed the expression of proteins involved in GABAergic neurotransmission in the striatum of the R6/1 transgenic mouse model. Western blot, quantitative PCR and immunohistochemical analyses were conducted on male R6/1 mice and age-matched wild type littermates. Analyses were performed on 2 and 6 month-old animals, respectively, before and after the onset of motor symptoms. Expression of GAD 67, GAD 65, NL2, or gephyrin proteins, involved in GABA synthesis or synapse formation did not display major changes. In contrast, expression of alpha1, alpha3 and alpha5 GABAAR subunits was increased while the expression of delta was decreased, suggesting a change in tonic- and phasic inhibitory transmission. Western blot analysis of the striatum from 8 month-old Hdh Q111, a knock-in mouse model of HD with mild deficits, confirmed the alpha1 subunit increased expression. From immunohistochemical analyses, we also found that alpha1 subunit expression is increased in medium-sized spiny projection neurons (MSN) and decreased in parvalbumin (PV)-expressing interneurons at 2 and 6 months in R6/1 mice. Moreover, alpha2 subunit labeling on the PV and MSN cell membranes was increased at 2 months and decreased at 6 months. Alteration of gene expression in the striatum and modification of GABAA receptor subtypes in both interneurons and projection neurons suggested that HD mutation has a profound effect on synaptic plasticity at an early stage, before the onset of motor symptoms. These results also indicate that cognitive and other behavioral deficits may be associated with changes in GABAergic neurotransmission that consequently could be a relevant target for early therapeutic treatment.





Abstract:
Layer 5 (L5) is a major neocortical output layer containing L5A slender-tufted (L5A-st) and L5B thick-tufted (L5B-tt) pyramidal neurons. These neuron types differ in their in vivo firing patterns, connectivity and dendritic morphology amongst other features, reflecting their specific functional role within the neocortical circuits. Here, we asked whether the active properties of the basal dendrites that receive the great majority of synaptic inputs within L5 differ between these two pyramidal neuron classes. To quantify their active properties, we measured the efficacy with which action potential (AP) firing patterns backpropagate along the basal dendrites by measuring the accompanying calcium transients using two-photon laser scanning microscopy in rat somatosensory cortex slices. For these measurements we used both 'artificial' three-AP patterns and more complex physiological AP patterns that were previously recorded in anesthetized rats in L5A-st and L5B-tt neurons in response to whisker stimulation. We show that AP patterns with relatively few APs (3APs) evoke a calcium response in L5B-tt, but not L5A-st, that is dependent on the temporal pattern of the three APs. With more complex in vivo recorded AP patterns, the average calcium response was similar in the proximal dendrites but with a decay along dendrites (measured up to 100 mum) of L5B-tt but not L5A-st neurons. Interestingly however, the whisker evoked AP patterns-although very different for the two cell types-evoke similar calcium responses. In conclusion, although the effectiveness with which different AP patterns evoke calcium transients vary between L5A-st and L5B-tt cell, the calcium influx appears to be tuned such that whisker-evoked calcium transients are within the same dynamic range for both cell types.





2017 | PLoS ONE   IF 2.8
Long-term effects of interference on short-term memory performance in the rat.
Missaire M, Fraize N, Joseph MA, Hamieh AM, Parmentier R, Marighetto A, Salin PA, Malleret G

Abstract:
A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a 'within-session/short-term' PI effect. However, we also observed a different 'between-session/long-term' PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored more permanently in an intermediary form or memory between WM and long-term memory.





2017 | methods enzymol
Functional Analysis of Mitochondrial CB1 Cannabinoid Receptors (mtCB1) in the Brain.
Melser S, Pagano Zottola AC, Serrat R, Puente N, Grandes P, Marsicano G, Hebert-Chatelain E

Abstract:
Recent evidence indicates that, besides its canonical localization at cell plasma membranes, the type-1 cannabinoid receptor, CB1 is functionally present at brain and muscle mitochondrial membranes (mtCB1). Through mtCB1 receptors, cannabinoids can directly regulate intramitochondrial signaling and respiration. This new and surprising discovery paves the way to new potential fields of research, dealing with the direct impact of G protein-coupled receptors on bioenergetic processes and its functional implications. In this chapter, we summarize some key experimental approaches established in our laboratories to identify anatomical, biochemical, and functional features of mtCB1 receptors in the brain. In particular, we describe the procedures to obtain reliable and controlled detection of mtCB1 receptors by immunogold electromicroscopy and by immunoblotting methods. Then, we address the study of direct cannabinoid effects on the electron transport system and oxidative phosphorylation. Finally, we present a functional example of the impact of mtCB1 receptors on mitochondrial mobility in cultured neurons. Considering the youth of the field, these methodological approaches will very likely be improved and refined in the future, but this chapter aims at presenting the methods that are currently used and, in particular, at underlining the need of rigorous controls to obtain reliable results. We hope that this chapter might help scientists becoming interested in this new and exciting field of research.





2017 | front mol neurosci   IF 5.1
Ribosomal Protein S6 Phosphorylation Is Involved in Novelty-Induced Locomotion, Synaptic Plasticity and mRNA Translation.
Puighermanal E, Biever A, Pascoli V, Melser S, Pratlong M, Cutando L, Rialle S, Severac D, Boubaker-Vitre J, Meyuhas O, Marsicano G, Luscher C, Valjent E

Abstract:
The phosphorylation of the ribosomal protein S6 (rpS6) is widely used to track neuronal activity. Although it is generally assumed that rpS6 phosphorylation has a stimulatory effect on global protein synthesis in neurons, its exact biological function remains unknown. By using a phospho-deficient rpS6 knockin mouse model, we directly tested the role of phospho-rpS6 in mRNA translation, plasticity and behavior. The analysis of multiple brain areas shows for the first time that, in neurons, phospho-rpS6 is dispensable for overall protein synthesis. Instead, we found that phospho-rpS6 controls the translation of a subset of mRNAs in a specific brain region, the nucleus accumbens (Acb), but not in the dorsal striatum. We further show that rpS6 phospho-mutant mice display altered long-term potentiation (LTP) in the Acb and enhanced novelty-induced locomotion. Collectively, our findings suggest a previously unappreciated role of phospho-rpS6 in the physiology of the Acb, through the translation of a selective subclass of mRNAs, rather than the regulation of general protein synthesis.





30/11/2016 | Diabetes   IF 8.8
Inhibiting Microglia Expansion Prevents Diet-induced Hypothalamic and Peripheral Inflammation.
Andre C, Guzman-Quevedo O, Rey C, Remus-Borel J, Clark S, Castellanos-Jankiewicz A, Ladeveze E, Leste-Lasserre T, Nadjar A, Abrous DN, Laye S, Cota D

Abstract:
Cell proliferation and neuroinflammation in the adult hypothalamus may contribute to the pathogenesis of obesity. Here we tested whether the intertwining of these two processes has a role in the metabolic changes caused by three weeks of saturated high-fat diet (HFD) consumption.As compared to chow, HFD-fed mice rapidly increased body weight and fat mass, and specifically showed increased microglia number in the arcuate nucleus (ARC) of the hypothalamus. Microglia expansion required the adequate presence of fats and carbohydrates in the diet, since feeding mice a very high-fat, very low-carbohydrate diet did not affect cell proliferation. Blocking HFD-induced cell proliferation by central delivery of the antimitotic drug arabinofuranosyl cytidine (AraC) blunted food intake, body weight gain and adiposity. AraC treatment completely prevented the increase in the number of activated microglia in the ARC, the expression of the pro-inflammatory cytokine TNFalpha in microglia and the recruitment of the NF-kappaB pathway, while restoring hypothalamic leptin sensitivity. Central blockade of cell proliferation also normalized circulating levels of the cytokines leptin and IL-1beta and decreased peritoneal pro-inflammatory CD86-IR macrophages number.These findings suggest that inhibition of diet-dependent microglia expansion hinders body weight gain while preventing central and peripheral inflammatory responses due to caloric overload.





25/11/2016 | Sci Rep   IF 5.2
Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress.
Belnoue L, Malvaut S, Ladeveze E, Abrous DN, Koehl M

Abstract:
Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers' ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers.





22/11/2016 | Cereb Cortex   IF 8.3
Activity-Dependent Neuroplasticity Induced by an Enriched Environment Reverses Cognitive Deficits in Scribble Deficient Mouse.
Hilal ML, Moreau MM, Racca C, Pinheiro VL, Piguel NH, Santoni MJ, Dos Santos Carvalho S, Blanc JM, Abada YK, Peyroutou R, Medina C, Doat H, Papouin T, Vuillard L, Borg JP, Rachel R, Panatier A, Montcouquiol M, Oliet SHR, Sans N

Abstract:
Planar cell polarity (PCP) signaling is well known to play a critical role during prenatal brain development; whether it plays specific roles at postnatal stages remains rather unknown. Here, we investigated the role of a key PCP-associated gene scrib in CA1 hippocampal structure and function at postnatal stages. We found that Scrib is required for learning and memory consolidation in the Morris water maze as well as synaptic maturation and NMDAR-dependent bidirectional plasticity. Furthermore, we unveiled a direct molecular interaction between Scrib and PP1/PP2A phosphatases whose levels were decreased in postsynaptic density of conditional knock-out mice. Remarkably, exposure to enriched environment (EE) preserved memory formation in CaMK-Scrib-/- mice by recovering synaptic plasticity and maturation. Thus, Scrib is required for synaptic function involved in memory formation and EE has beneficiary therapeutic effects. Our results demonstrate a distinct new role for a PCP-associated protein, beyond embryonic development, in cognitive functions during adulthood.





12/11/2016 | Brain Behav Immun   IF 5.9
Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis.
Planche V, Panatier A, Hiba B, Ducourneau EG, Raffard G, Dubourdieu N, Maitre M, Leste-Lasserre T, Brochet B, Dousset V, Desmedt A, Oliet SH, Tourdias T

Abstract:
Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis.





09/11/2016 | Nature   IF 38.1
A cannabinoid link between mitochondria and memory.
Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, Zottola AC, Delamarre A, Cannich A, Vincent P, Varilh M, Robin LM, Terral G, Garcia-Fernandez MD, Colavita M, Mazier W, Drago F, Puente N, Reguero L, Elezgarai I, Dupuy JW, Cota D, Lopez-Rodriguez ML, Barreda-Gomez G, Massa F, Grandes P, Benard G, Marsicano G

Abstract:
Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Galphai protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.





04/11/2016 | Science   IF 34.7
Parsing reward from aversion.
Beyeler A



15/08/2016 | Proc Natl Acad Sci U S A   IF 9.4
Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.
Busquets-Garcia A, Gomis-Gonzalez M, Srivastava RK, Cutando L, Ortega-Alvaro A, Ruehle S, Remmers F, Bindila L, Bellocchio L, Marsicano G, Lutz B, Maldonado R, Ozaita A

Abstract:
Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine beta-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH+ cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.





01/08/2016 | Proc Natl Acad Sci U S A   IF 9.4
Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy.
Bassil F, Fernagut PO, Bezard E, Pruvost A, Leste-Lasserre T, Hoang QQ, Ringe D, Petsko GA, Meissner WG

Abstract:
Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (alpha-syn) aggregates in affected oligodendrocytes. Several studies point to alpha-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of alpha-syn in vitro and in neuronal cell models of alpha-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate alpha-syn pathology and to mediate neuroprotection in proteolipid protein alpha-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of alpha-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated alpha-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting alpha-syn accumulation.





21/07/2016 | Nature   IF 38.1
Prefrontal neuronal assemblies temporally control fear behaviour.
Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TC, Herry C

Abstract:
Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses.





08/07/2016 | cell death differ   IF 8.2
Astroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer's disease.
Yi C, Mei X, Ezan P, Mato S, Matias I, Giaume C, Koulakoff A

Abstract:
In Alzheimer's disease (AD), astrocyte properties are modified but their involvement in this pathology is only beginning to be appreciated. The expression of connexins, proteins forming gap junction channels and hemichannels, is increased in astrocytes contacting amyloid plaques in brains of AD patients and APP/PS1 mice. The consequences on their channel functions was investigated in a murine model of familial AD, the APPswe/PS1dE9 mice. Whereas gap junctional communication was not affected, we revealed that hemichannels were activated in astrocytes of acute hippocampal slices containing Abeta plaques. Such hemichannel activity was detected in all astrocytes, whatever their distance from amyloid plaques, but with an enhanced activity in the reactive astrocytes contacting amyloid plaques. Connexin43 was the main hemichannel contributor, however, a minor pannexin1 component was also identified in the subpopulation of reactive astrocytes in direct contact with plaques. Distinct regulatory pathways are involved in connexin and pannexin hemichannel activation. Inflammation triggered pannexin hemichannel activity, whereas connexin43 hemichannels were activated by the increase in resting calcium level of astrocytes. Importantly, hemichannel activation led to the release of ATP and glutamate that contributed to maintain a high calcium level in astrocytes placing them in the center of a vicious circle. The astroglial targeted connexin43 gene knocking-out in APPswe/PS1dE9 mice allowed to diminish gliotransmitter release and to alleviate neuronal damages, reducing oxidative stress and neuritic dystrophies in hippocampal neurons associated to plaques. Altogether, these data highlight the importance of astroglial hemichannels in AD and suggest that blocking astroglial hemichannel activity in astrocytes could represent an alternative therapeutic strategy in AD.Cell Death and Differentiation advance online publication, 8 July 2016; doi:10.1038/cdd.2016.63.





17/06/2016 | Nat Commun   IF 11.3
Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors.
Viana da Silva S, Haberl MG, Zhang P, Bethge P, Lemos C, Goncalves N, Gorlewicz A, Malezieux M, Goncalves FQ, Grosjean N, Blanchet C, Frick A, Nagerl UV, Cunha RA, Mulle C

Abstract:
Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients.





09/06/2016 | Nature   IF 38.1
Midbrain circuits for defensive behaviour.
Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, Wolff SB, Ramakrishnan C, Fenno L, Deisseroth K, Herry C, Arber S, Luthi A

Abstract:
Survival in threatening situations depends on the selection and rapid execution of an appropriate active or passive defensive response, yet the underlying brain circuitry is not understood. Here we use circuit-based optogenetic, in vivo and in vitro electrophysiological, and neuroanatomical tracing methods to define midbrain periaqueductal grey circuits for specific defensive behaviours. We identify an inhibitory pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal grey that produces freezing by disinhibition of ventrolateral periaqueductal grey excitatory outputs to pre-motor targets in the magnocellular nucleus of the medulla. In addition, we provide evidence for anatomical and functional interaction of this freezing pathway with long-range and local circuits mediating flight. Our data define the neuronal circuitry underlying the execution of freezing, an evolutionarily conserved defensive behaviour, which is expressed by many species including fish, rodents and primates. In humans, dysregulation of this 'survival circuit' has been implicated in anxiety-related disorders.





06/2016 | data brief
Effects of glia metabolism inhibition on nociceptive behavioral testing in rats.
Lefevre Y, Amadio A, Vincent P, Descheemaeker A, Oliet SH, Dallel R, Voisin DL

Abstract:
Fluoroacetate has been widely used to inhibit glia metabolism in vivo. It has yet to be shown what the effects of chronic intrathecal infusion of fluoroacetate on nociceptive behavioral testing are. The effects of chronic infusion of fluoroacetate (5 nmoles/h) for 2 weeks were examined in normal rats. Chronic intrathecal fluoroacetate did not alter mechanical threshold (von Frey filaments), responses to supra-threshold mechanical stimuli (von Frey filaments), responses to hot (hot plate) or cool (acetone test) stimuli and did not affect motor performance of the animals, which was tested with rotarod. This suggests that fluoroacetate at appropriate dose did not suppress neuronal activity in the spinal cord.





06/2016 | Neurobiol Dis   IF 4.9
MitoBrain, Putting energy into the brain.
Benard G, Bezard E, Marsicano G, Pouvreau S





20/05/2016 | Neuroscience   IF 3.2
Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington's disease.
Du Z, Chazalon M, Bestaven E, Leste-Lasserre T, Baufreton J, Cazalets JR, Cho YH, Garret M

Abstract:
Huntington's disease (HD) is characterized by progressive motor symptoms preceded by cognitive deficits and is regarded as a disorder that primarily affects the basal ganglia. The external globus pallidus (GPe) has a central role in the basal ganglia, projects directly to the cortex, and is majorly modulated by GABA. To gain a better understanding of the time course of HD progression and gain insight into the underlying mechanisms, we analysed GABAergic neurotransmission in the GPe of the R6/1 mouse model at purportedly asymptomatic and symptomatic stages (i.e., 2 and 6 months). Western blot and quantitative PCR analyses revealed alterations in the GPe of male R6/1 mice compared with wild type littermates. Expression of proteins involved in pre- and post-synaptic GABAergic compartments as well as synapse number were severely decreased at 2 and 6 months. At both ages, patch clamp electrophysiological recordings showed a decrease of spontaneous and miniature inhibitory post-synaptic currents suggesting that Huntington's disease mutation has an early effect on the GABA signalling in the brain. Therefore, we performed continuous locomotor activity recordings from 2 to 4 months of age. Actigraphy analyses revealed rest/activity fragmentation alterations that parallel GABAergic system impairment at 2 months, while the locomotor deficit is evident only at 3 months in R6/1 mice. Our results reveal early deficits in Huntington's disease and support growing evidence for a critical role played by the GPe in physiological and pathophysiological states. We suggest that actimetry may be used as a non-invasive tool to monitor early disease progression.





20/04/2016 | Neuron   IF 14
Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval.
Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, Conyers GF, Luck R, Wildes CP, Tye KM

Abstract:
Although the basolateral amygdala (BLA) is known to play a critical role in the formation of memories of both positive and negative valence, the coding and routing of valence-related information is poorly understood. Here, we recorded BLA neurons during the retrieval of associative memories and used optogenetic-mediated phototagging to identify populations of neurons that synapse in the nucleus accumbens (NAc), the central amygdala (CeA), or ventral hippocampus (vHPC). We found that despite heterogeneous neural responses within each population, the proportions of BLA-NAc neurons excited by reward predictive cues and of BLA-CeA neurons excited by aversion predictive cues were higher than within the entire BLA. Although the BLA-vHPC projection is known to drive behaviors of innate negative valence, these neurons did not preferentially code for learned negative valence. Together, these findings suggest that valence encoding in the BLA is at least partially mediated via divergent activity of anatomically defined neural populations.





21/03/2016 | Psychoneuroendocrinology   IF 4.7
Estradiol enhances retention but not organization of hippocampus-dependent memory in intact male mice.
Al Abed AS, Sellami A, Brayda-Bruno L, Lamothe V, Nogues X, Potier M, Bennetau-Pelissero C, Marighetto A

Abstract:
Because estrogens have mostly been studied in gonadectomized females, effects of chronic exposure to environmental estrogens in the general population are underestimated. Estrogens can enhance hippocampus-dependent memory through the modulation of information storage. However, declarative memory, the hippocampus-dependent memory of facts and events, demands more than abilities to retain information. Specifically, memory of repetitive events of everyday life such as 'where I parked' requires abilities to organize/update memories to prevent proactive interference from similar memories of previous 'parking events'. Whether such organizational processes are estrogen-sensitive is unknown. We here studied, in intact young and aged adult mice, drinking-water (1muM) estradiol effects on both retention and organizational components of hippocampus-dependent memory, using a radial-maze task of everyday-like memory. Demand on retention vs organization was manipulated by varying the time-interval separating repetitions of similar events. Estradiol increased performance in young and aged mice under minimized organizational demand, but failed to improve the age-associated memory impairment and diminished performance in young mice under high organizational demand. In fact, estradiol prolonged mnemonic retention of successive events without improving organization abilities, hence resulted in more proactive interference from irrelevant memories. c-Fos imaging of testing-induced brain activations showed that the deterioration of young memory was associated with dentate gyrus dysconnectivity, reminiscent of that seen in aged mice. Our findings support the view that estradiol is promnesic but also reveal that such property can paradoxically impair memory. These findings have important outcomes regarding health issues relative to the impact of environmental estrogens in the general population.





15/02/2016 | Nat Neurosci   IF 16.7
4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior.
Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C

Abstract:
Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological and optogenetic manipulations, we found that freezing, a behavioral expression of fear, temporally coincided with the development of sustained, internally generated 4-Hz oscillations in prefrontal-amygdala circuits. 4-Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4-Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behavior. These results unravel a sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behavior.





01/01/2016 | dis model mech   IF 4.3
The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.
Bermudez-Silva FJ, Romero-Zerbo SY, Haissaguerre M, Ruz-Maldonado I, Lhamyani S, El Bekay R, Tabarin A, Marsicano G, Cota D

Abstract:
The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the beta-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 microM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic beta-cell diseases.





Abstract:
Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs) deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC). Here we show that hypothalamic-pituitary-adrenal (HPA) axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR) signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits.





Abstract:
Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.





2016 | f1000res
Cannabinoid receptor type-1: breaking the dogmas.
Busquets Garcia A, Soria-Gomez E, Bellocchio L, Marsicano G

Abstract:
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.