Neurocentre Magendie

Les publications

IF du Neurocentre

657 publications

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en Juillet 2017

24/11/2017 | cell cycle
Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements.
Durrieu-Gaillard S, Dumay-Odelot H, Boldina G, Tourasse NJ, Allard D, Andre F, Macari F, Choquet A, Lagarde P, Drutel G, Leste-Lasserre T, Petitet M, Lesluyes T, Lartigue-Faustin L, Dupuy JW, Chibon F, Roeder RG, Joubert D, Vagner S, Teichmann M

RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.

22/11/2017 | Psychopharmacology (Berl)   IF 3.3
Synergistic enhancing-memory effect of donepezil and S 47445, an AMPA positive allosteric modulator, in middle-aged and aged mice.
Bretin S, Krazem A, Henkous N, Froger-Colleaux C, Mocaer E, Louis C, Perdaems N, Marighetto A, Beracochea D

Positive allosteric modulators of AMPA receptors (AMPA-PAMs) are described to facilitate cognitive processes in different memory-based models. Among them, S 47445 is a novel potent and selective AMPA-PAM. In order to assess its efficacy after repeated administration, S 47445 effect was evaluated in two aging-induced memory dysfunction tasks in old mice, one short-term working memory model evaluated in a radial maze task and one assessing contextual memory performance. S 47445 was shown to improve cognition in both models sensitive to aging. In fact, administration of S 47445 at 0.3 mg/kg (s.c.) reversed the age-induced deficits of the working memory model whatever the retention interval. Moreover, in the contextual task, S 47445 also reversed the age-induced deficit at all tested doses (from 0.03 to 0.3 mg/kg, p.o.). Since donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer's disease patients, an alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both glutamatergic AMPA receptors and cholinergic pathways by combining pharmacological treatments. The present study further examined such effects by assessing combinations of S 47445 and donepezil given orally during 9 days in aged C57/Bl6J mice using contextual memory task (CSD) and the working memory model of serial alternation task (AT). Interestingly, a significant synergistic memory-enhancing effect was observed with the combination of donepezil at 0.1 mg/kg with S 47445 at 0.1 mg/kg p.o. in the CSD or with S 47445 at 0.1 and 0.3 mg/kg in AT in comparison to compounds given alone and without any pharmacokinetic interaction.

20/11/2017 | hepatology   IF 13.2
New insights into diagnosis and therapeutic options for proliferative hepatoblastoma.
Hooks KB, Audoux J, Fazli H, Lesjean S, Ernault T, Senant ND, Leste-Lasserre T, Hagedorn M, Rousseau B, Danet C, Branchereau S, Brugieres L, Taque S, Guettier C, Fabre M, Rullier A, Buendia MA, Commes T, Grosset CF, Raymond AA

Surgery and cisplatin-based treatment of hepatoblastoma (HB) currently guarantee the survival of 70-80% of patients. However, some important challenges remain in diagnosing high risk tumors and identifying relevant targetable pathways offering new therapeutic avenues. Previously, two molecular subclasses of hepatoblastoma tumors have been described, namely C1 and C2; C2 being the subgroup with the poorest prognosis, a more advanced tumor stage and the worst overall survival rate. An associated 16-gene signature to discriminate the two tumoral subgroups was proposed but it has not been transferred into clinical routine. To address these issues we performed RNA sequencing of 25 tumors and matched normal liver samples from patients. The transcript profiling separated HB into three distinct subgroups named C1, C2A and C2B, identifiable by a concise four-gene signature: HSD17B6, ITGA6, TOP2A and VIM, with TOP2A being characteristic for the proliferative C2A tumors. Differential expression of these genes was confirmed by RT-qPCR on an expanded cohort and by immunohistochemistry. We also revealed significant overexpression of genes involved in Fanconi Anemia (FA) pathway in the C2A subgroup. We then investigated the ability of several described FA inhibitors to block growth of HB cells in vitro and in vivo. We demonstrated that bortezomib, an FDA-approved proteasome inhibitor, strongly impairs the proliferation and survival of HB cell lines in vitro, blocks FA pathway associated double-strand DNA repair and significantly impedes HB growth in vivo. In conclusion, the highly proliferating C2A subtype is characterized by TOP2A gene up-regulation and FA pathway activation and HB therapeutic arsenal could include Bortezomib for the treatment of patients with the most aggressive tumors. This article is protected by copyright. All rights reserved.

01/11/2017 | J Clin Invest   IF 12.8
Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages.
Ruiz de Azua I, Mancini G, Srivastava RK, Rey AA, Cardinal P, Tedesco L, Zingaretti CM, Sassmann A, Quarta C, Schwitter C, Conrad A, Wettschureck N, Vemuri VK, Makriyannis A, Hartwig J, Mendez-Lago M, Bindila L, Monory K, Giordano A, Cinti S, Marsicano G, Offermanns S, Nisoli E, Pagotto U, Cota D, Lutz B

Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1-KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.

31/10/2017 | Cereb Cortex   IF 6.6
Pathway-Specific Control of Striatal Neuron Vulnerability by Corticostriatal Cannabinoid CB1 Receptors.
Ruiz-Calvo A, Maroto IB, Bajo-Graneras R, Chiarlone A, Gaudioso A, Ferrero JJ, Resel E, Sanchez-Prieto J, Rodriguez-Navarro JA, Marsicano G, Galve-Roperh I, Bellocchio L, Guzman M

The vast majority of neurons within the striatum are GABAergic medium spiny neurons (MSNs), which receive glutamatergic input from the cortex and thalamus, and form two major efferent pathways: the direct pathway, expressing dopamine D1 receptor (D1R-MSNs), and the indirect pathway, expressing dopamine D2 receptor (D2R-MSNs). While molecular mechanisms of MSN degeneration have been identified in animal models of striatal damage, the molecular factors that dictate a selective vulnerability of D1R-MSNs or D2R-MSNs remain unknown. Here, we combined genetic, chemogenetic, and pharmacological strategies with behavioral and neurochemical analyses, and show that the pool of cannabinoid CB1 receptor (CB1R) located on corticostriatal terminals efficiently safeguards D1R-MSNs, but not D2R-MSNs, from different insults. This cell-specific response relies on the regulation of glutamatergic signaling, and is independent from the CB1R-dependent control of astroglial activity in the striatum. These findings define cortical CB1R as a pivotal synaptic player in dictating a differential vulnerability of D1R-MSNs versus D2R-MSNs, and increase our understanding of the role of coordinated cannabinergic-glutamatergic signaling in establishing corticostriatal circuits and its dysregulation in neurodegenerative diseases.

26/10/2017 | Gut   IF 16.7
Liver Reptin/RUVBL2 controls glucose and lipid metabolism with opposite actions on mTORC1 and mTORC2 signalling.
Javary J, Allain-Courtois N, Saucisse N, Costet P, Heraud C, Benhamed F, Pierre R, Bure C, Pallares-Lupon N, Do Cruzeiro M, Postic C, Cota D, Dubus P, Rosenbaum J, Benhamouche-Trouillet S

OBJECTIVE: The AAA+ ATPase Reptin is overexpressed in hepatocellular carcinoma and preclinical studies indicate that it could be a relevant therapeutic target. However, its physiological and pathophysiological roles in vivo remain unknown. This study aimed to determine the role of Reptin in mammalian adult liver. DESIGN AND RESULTS: We generated an inducible liver-specific Reptin knockout (RepinLKO ) mouse model. Following Reptin invalidation, mice displayed decreased body and fat mass, hypoglycaemia and hypolipidaemia. This was associated with decreased hepatic mTOR protein abundance. Further experiments in primary hepatocytes demonstrated that Reptin maintains mTOR protein level through its ATPase activity. Unexpectedly, loss or inhibition of Reptin induced an opposite effect on mTORC1 and mTORC2 signalling, with: (1) strong inhibition of hepatic mTORC1 activity, likely responsible for the reduction of hepatocytes cell size, for decreased de novo lipogenesis and cholesterol transcriptional programmes and (2) enhancement of mTORC2 activity associated with inhibition of the gluconeogenesis transcriptional programme and hepatic glucose production. Consequently, the role of hepatic Reptin in the pathogenesis of insulin resistance (IR) and non-alcoholic fatty liver disease consecutive to a high-fat diet was investigated. We found that Reptin deletion completely rescued pathological phenotypes associated with IR, including glucose intolerance, hyperglycaemia, hyperlipidaemia and hepatic steatosis. CONCLUSION: We show here that the AAA +ATPase Reptin is a regulator of mTOR signalling in the liver and global glucido-lipidic homeostasis. Inhibition of hepatic Reptin expression or activity represents a new therapeutic perspective for metabolic syndrome.

24/10/2017 | Nat Commun   IF 12.1
Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice.
Aloisi E, Le Corf K, Dupuis J, Zhang P, Ginger M, Labrousse V, Spatuzza M, Georg Haberl M, Costa L, Shigemoto R, Tappe-Theodor A, Drago F, Vincenzo Piazza P, Mulle C, Groc L, Ciranna L, Catania MV, Frick A

Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-activated long-term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics.

19/09/2017 | Cell Metab   IF 18.2
Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity.
Quarta C, Clemmensen C, Zhu Z, Yang B, Joseph SS, Lutter D, Yi CX, Graf E, Garcia-Caceres C, Legutko B, Fischer K, Brommage R, Zizzari P, Franklin BS, Krueger M, Koch M, Vettorazzi S, Li P, Hofmann SM, Bakhti M, Bastidas-Ponce A, Lickert H, Strom TM, Gailus-Durner V, Bechmann I, Perez-Tilve D, Tuckermann J, Hrabe de Angelis M, Sandoval D, Cota D, Latz E, Seeley RJ, Muller TD, DiMarchi RD, Finan B, Tschop MH

Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity.

19/09/2017 | Proc Natl Acad Sci U S A   IF 9.7
Temporal binding function of dorsal CA1 is critical for declarative memory formation.
Sellami A, Al Abed AS, Brayda-Bruno L, Etchamendy N, Valerio S, Oule M, Pantaleon L, Lamothe V, Potier M, Bernard K, Jabourian M, Herry C, Mons N, Piazza PV, Eichenbaum H, Marighetto A

Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.