Publications du Neurocentre Magendie

Les publications

IF du Neurocentre

687 publications

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en Juin 2018

2019 | Current Opinion in Behavioral Sciences
Valence Coding in Amygdala Circuits
Pignatelli M, Beyeler A

The neural mechanisms underlying emotional valence are at the interface between perception and action, integrating inputs from the external environment with past experiences to guide the behavior of an organism. Depending on the positive or negative valence assigned to an environmental stimulus, the organism will approach or avoid the source of the stimulus. Multiple convergent studies have demonstrated that the amygdala complex is a critical node of the circuits assigning valence. Here we examine the current progress in identifying valence coding properties of neural populations in different nuclei of the amygdala, based on their activity, connectivity, and gene expression profile.

07/11/2018 | Nature   IF 41.6
Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli.
Vander Weele CM, Siciliano CA, Matthews GA, Namburi P, Izadmehr EM, Espinel IC, Nieh EH, Schut EHS, Padilla-Coreano N, Burgos-Robles A, Chang CJ, Kimchi EY, Beyeler A, Wichmann R, Wildes CP, Tye KM

Dopamine modulates medial prefrontal cortex (mPFC) activity to mediate diverse behavioural functions(1,2); however, the precise circuit computations remain unknown. One potentially unifying model by which dopamine may underlie a diversity of functions is by modulating the signal-to-noise ratio in subpopulations of mPFC neurons(3-6), where neural activity conveying sensory information (signal) is amplified relative to spontaneous firing (noise). Here we demonstrate that dopamine increases the signal-to-noise ratio of responses to aversive stimuli in mPFC neurons projecting to the dorsal periaqueductal grey (dPAG). Using an electrochemical approach, we reveal the precise time course of pinch-evoked dopamine release in the mPFC, and show that mPFC dopamine biases behavioural responses to aversive stimuli. Activation of mPFC-dPAG neurons is sufficient to drive place avoidance and defensive behaviours. mPFC-dPAG neurons display robust shock-induced excitations, as visualized by single-cell, projection-defined microendoscopic calcium imaging. Finally, photostimulation of dopamine terminals in the mPFC reveals an increase in the signal-to-noise ratio in mPFC-dPAG responses to aversive stimuli. Together, these data highlight how dopamine in the mPFC can selectively route sensory information to specific downstream circuits, representing a potential circuit mechanism for valence processing.

11/2018 | Mol Psychiatry   IF 11.6
CaMKIIbeta regulates nucleus-centrosome coupling in locomoting neurons of the developing cerebral cortex.
Nicole O, Bell DM, Leste-Lasserre T, Doat H, Guillemot F, Pacary E

11/2018 | Mol Psychiatry   IF 11.6
A novel role for CAMKIIbeta in the regulation of cortical neuron migration: implications for neurodevelopmental disorders.
Nicole O, Bell DM, Leste-Lasserre T, Doat H, Guillemot F, Pacary E

Perturbation of CaMKIIbeta expression has been associated with multiple neuropsychiatric diseases, highlighting CaMKIIbeta as a gene of interest. Yet, in contrast to CaMKIIalpha, the specific functions of CaMKIIbeta in the brain remain poorly explored. Here, we reveal a novel function for this CaMKII isoform in vivo during neuronal development. By using in utero electroporation, we show that CaMKIIbeta is an important regulator of radial migration of projection neurons during cerebral cortex development. Knockdown of CaMKIIbeta causes accelerated migration of nascent pyramidal neurons, whereas overexpression of CaMKIIbeta inhibits migration, demonstrating that precise regulation of CaMKIIbeta expression is required for correct neuronal migration. More precisely, CaMKIIbeta controls the multipolar-bipolar transition in the intermediate zone and locomotion in the cortical plate through its actin-binding and -bundling activities. In addition, our data indicate that a fine-tuned balance between CaMKIIbeta and cofilin activities is necessary to ensure proper migration of cortical neurons. Thus, our findings define a novel isoform-specific function for CaMKIIbeta, demonstrating that CaMKIIbeta has a major biological function in the developing brain.

16/10/2018 | Acta Neuropathological Communication
Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease.
Ceyzeriat K, Ben Haim L, Denizot A, Pommier D, Matos M, Guillemaud O, Palomares MA, Abjean L, Petit F, Gipchtein P, Gaillard MC, Guillermier M, Bernier S, Gaudin M, Auregan G, Josephine C, Dechamps N, Veran J, Langlais V, Cambon K, Bemelmans AP, Baijer J, Bonvento G, Dhenain M, Deleuze JF, Oliet SHR, Brouillet E, Hantraye P, Carrillo-de Sauvage MA, Olaso R, Panatier A, Escartin C

Astrocyte reactivity and neuroinflammation are hallmarks of CNS pathological conditions such as Alzheimer's disease. However, the specific role of reactive astrocytes is still debated. This controversy may stem from the fact that most strategies used to modulate astrocyte reactivity and explore its contribution to disease outcomes have only limited specificity. Moreover, reactive astrocytes are now emerging as heterogeneous cells and all types of astrocyte reactivity may not be controlled efficiently by such strategies.Here, we used cell type-specific approaches in vivo and identified the JAK2-STAT3 pathway, as necessary and sufficient for the induction and maintenance of astrocyte reactivity. Modulation of this cascade by viral gene transfer in mouse astrocytes efficiently controlled several morphological and molecular features of reactivity. Inhibition of this pathway in mouse models of Alzheimer's disease improved three key pathological hallmarks by reducing amyloid deposition, improving spatial learning and restoring synaptic deficits.In conclusion, the JAK2-STAT3 cascade operates as a master regulator of astrocyte reactivity in vivo. Its inhibition offers new therapeutic opportunities for Alzheimer's disease.

23/09/2018 | Exp Neurol   IF 4.5
Serotonin2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitory control on serotonin neurons.
Cathala A, Devroye C, Drutel G, Revest JM, Artigas F, Spampinato U

The central serotonin2B receptor (5-HT2BR) is a well-established modulator of dopamine (DA) neuron activity in the rodent brain. Recent studies in rats have shown that the effect of 5-HT2BR antagonists on accumbal and medial prefrontal cortex (mPFC) DA outflow results from a primary action in the dorsal raphe nucleus (DRN), where they activate 5-HT neurons innervating the mPFC. Although the mechanisms underlying this interaction remain largely unknown, data in the literature suggest the involvement of DRN GABAergic interneurons in the control of 5-HT activity. The present study examined this hypothesis using in vivo (intracerebral microdialysis) and in vitro (immunohistochemistry coupled to reverse transcription-polymerase chain reaction) experimental approaches in rats. Intraperitoneal (0.16mg/kg) or intra-DRN (1muM) administration of the selective 5-HT2BR antagonist RS 127445 increased 5-HT outflow in both the DRN and the mPFC, these effects being prevented by the intra-DRN perfusion of the GABAA antagonist bicuculline (100muM), as well as by the subcutaneous (0.16mg/kg) or the intra-DRN (0.1muM) administration of the selective 5-HT1AR antagonist WAY 100635. The increase in DRN 5-HT outflow induced by the intra-DRN administration of the selective 5-HT reuptake inhibitor citalopram (0.1muM) was potentiated by the intra-DRN administration (0.5muM) of RS 127445 only in the absence of bicuculline perfusion. Finally, in vitro experiments revealed the presence of the 5-HT2BR mRNA on DRN GABAergic interneurons. Altogether, these results show that, in the rat DRN, 5-HT2BRs are located on GABAergic interneurons, and exert a tonic inhibitory control on 5-HT neurons innervating the mPFC.

In nonhuman mammals and in particular in rodents, most granule neurons of the dentate gyrus (DG) are generated during development and yet little is known about their properties compared with adult-born neurons. Although it is generally admitted that these populations are morphologically indistinguishable once mature, a detailed analysis of developmentally born neurons is lacking. Here, we used in vivo electroporation to label dentate granule cells (DGCs) generated in mouse embryos (E14.5) or in neonates (P0) and followed their morphological development up to 6 months after birth. By comparison with mature retrovirus-labeled DGCs born at weaning (P21) or young adult (P84) stages, we provide the evidence that perinatally born neurons, especially embryonically born cells, are morphologically distinct from later-born neurons and are thus easily distinguishable. In addition, our data indicate that semilunar and hilar GCs, 2 populations in ectopic location, are generated during the embryonic and the neonatal periods, respectively. Thus, our findings provide new insights into the development of the different populations of GCs in the DG and open new questions regarding their function in the brain.

23/08/2018 | Neuron   IF 14.3
Hippocampal CB1 Receptors Control Incidental Associations.
Busquets-Garcia A, Oliveira da Cruz JF, Terral G, Zottola ACP, Soria-Gomez E, Contini A, Martin H, Redon B, Varilh M, Ioannidou C, Drago F, Massa F, Fioramonti X, Trifilieff P, Ferreira G, Marsicano G

By priming brain circuits, associations between low-salience stimuli often guide future behavioral choices through a process known as mediated or inferred learning. However, the precise neurobiological mechanisms of these incidental associations are largely unknown. Using sensory preconditioning procedures, we show that type 1 cannabinoid receptors (CB1R) in hippocampal GABAergic neurons are necessary and sufficient for mediated but not direct learning. Deletion and re-expression of CB1R in hippocampal GABAergic neurons abolishes and rescues mediated learning, respectively. Interestingly, paired presentations of low-salience sensory cues induce a specific protein synthesis-dependent enhancement of hippocampal CB1R expression and facilitate long-term synaptic plasticity at inhibitory synapses. CB1R blockade or chemogenetic manipulations of hippocampal GABAergic neurons upon preconditioning affect incidental associations, as revealed by impaired mediated learning. Thus, CB1R-dependent control of inhibitory hippocampal neurotransmission mediates incidental associations, allowing future associative inference, a fundamental process for everyday life, which is altered in major neuropsychiatric diseases.

21/06/2018 | cell physiol biochem
Galphai Proteins are Indispensable for Hearing.
Beer-Hammer S, Lee SC, Mauriac SA, Leiss V, Groh IAM, Novakovic A, Piekorz RP, Bucher K, Chen C, Ni K, Singer W, Harasztosi C, Schimmang T, Zimmermann U, Pfeffer K, Birnbaumer L, Forge A, Montcouquiol M, Knipper M, Nurnberg B, Ruttiger L

BACKGROUND/AIMS: From invertebrates to mammals, Galphai proteins act together with their common binding partner Gpsm2 to govern cell polarization and planar organization in virtually any polarized cell. Recently, we demonstrated that Galphai3-deficiency in pre-hearing murine cochleae pointed to a role of Galphai3 for asymmetric migration of the kinocilium as well as the orientation and shape of the stereociliary ('hair') bundle, a requirement for the progression of mature hearing. We found that the lack of Galphai3 impairs stereociliary elongation and hair bundle shape in high-frequency cochlear regions, linked to elevated hearing thresholds for high-frequency sound. How these morphological defects translate into hearing phenotypes is not clear. METHODS: Here, we studied global and conditional Gnai3 and Gnai2 mouse mutants deficient for either one or both Galphai proteins. Comparative analyses of global versus Foxg1-driven conditional mutants that mainly delete in the inner ear and telencephalon in combination with functional tests were applied to dissect essential and redundant functions of different Galphai isoforms and to assign specific defects to outer or inner hair cells, the auditory nerve, satellite cells or central auditory neurons. RESULTS: Here we report that lack of Galphai3 but not of the ubiquitously expressed Galphai2 elevates hearing threshold, accompanied by impaired hair bundle elongation and shape in high-frequency cochlear regions. During the crucial reprogramming of the immature inner hair cell (IHC) synapse into a functional sensory synapse of the mature IHC deficiency for Galphai2 or Galphai3 had no impact. In contrast, double-deficiency for Galphai2 and Galphai3 isoforms results in abnormalities along the entire tonotopic axis including profound deafness associated with stereocilia defects. In these mice, postnatal IHC synapse maturation is also impaired. In addition, the analysis of conditional versus global Galphai3-deficient mice revealed that the amplitude of ABR wave IV was disproportionally elevated in comparison to ABR wave I indicating that Galphai3 is selectively involved in generation of neural gain during auditory processing. CONCLUSION: We propose a so far unrecognized complexity of isoform-specific and overlapping Galphai protein functions particular during final differentiation processes.

06/06/2018 | Neuron   IF 14.3
Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory.
Robin LM*, Cruz J*, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent M, Busquets-Garcia A, Bellocchio L, Soria-Gomez E, Papouin T, Varilh M, Sherwood MW, Belluomo I, Balcells G, Matias I, Bosier B, Drago F, Van Eeckhaut A, Smolders I, Georges F, Araque A, Panatier A, Oliet SHR*, Marsicano G*

Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1 receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1 receptors increased intracellular astroglial Ca(2+) levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.