Page personnelle

Anastassios KARAGIANNIS




Post-Doctorant

Tél : 63804 / 63806
Envoyer un email








8 publication(s) depuis Mars 2009:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


04/2017 | hepatology   IF 14.1
Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease.
Hadjihambi A, De Chiara F, Hosford PS, Habtetion A, Karagiannis A, Davies N, Gourine AV, Jalan R

Abstract:
The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte-neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia-lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia-induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. CONCLUSION: The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel-mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306-1318).




07/2016 | J Cereb Blood Flow Metab   IF 6
Hemichannel-mediated release of lactate.
Karagiannis A, Sylantyev S, Hadjihambi A, Hosford PS, Kasparov S, Gourine AV

Abstract:
In the central nervous system lactate contributes to the extracellular pool of readily available energy substrates and may also function as a signaling molecule which mediates communication between glial cells and neurons. Monocarboxylate transporters are believed to provide the main pathway for lactate transport across the membranes. Here we tested the hypothesis that lactate could also be released via opening of pannexin and/or functional connexin hemichannels. In acute slices prepared from the brainstem, hippocampus, hypothalamus and cortex of adult rats, enzymatic amperometric biosensors detected significant tonic lactate release inhibited by compounds, which block pannexin/connexin hemichannels and facilitated by lowering extracellular [Ca(2+)] or increased PCO2 Enhanced lactate release triggered by hypoxia was reduced by approximately 50% by either connexin or monocarboxylate transporter blockers. Stimulation of Schaffer collateral fibers triggered lactate release in CA1 area of the hippocampus, which was facilitated in conditions of low extracellular [Ca(2+)], markedly reduced by blockade of connexin hemichannels and abolished by lactate dehydrogenase inhibitor oxamate. These results indicate that lactate transport across the membranes may occur via mechanisms other than monocarboxylate transporters. In the central nervous system, hemichannels may function as a conduit of lactate release, and this mechanism is recruited during hypoxia and periods of enhanced neuronal activity.




26/08/2015 | J Neurosci   IF 6
COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex.
Lacroix A, Toussay X, Anenberg E, Lecrux C, Ferreiros N, Karagiannis A, Plaisier F, Chausson P, Jarlier F, Burgess SA, Hillman EM, Tegeder I, Murphy TH, Hamel E, Cauli B

Abstract:
UNLABELLED: Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT: Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.




15/07/2015 | J Physiol   IF 4.5
Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome.
Turovsky E, Karagiannis A, Abdala AP, Gourine AV

Abstract:
Rett syndrome, a prototypical neurological disorder caused by loss of function of the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2) gene, is associated with a severely disordered breathing pattern and reduced ventilatory CO2 sensitivity. In a mouse model of Rett syndrome (MeCP2 knockout), re-introduction of the MeCP2 gene selectively in astrocytes rescues normal respiratory phenotype. In the present study we determined whether the metabolic and/or signalling functions of astrocytes are affected by testing the hypotheses that in conditions of MeCP2 deficiency, medullary astrocytes are unable to produce/release appropriate amounts of lactate or detect changes in PCO2/[H(+) ], or both. No differences in tonic or hypoxia-induced release of lactate from the ventral surface of the medulla oblongata or cerebral cortex in brain slices of MeCP2-knockout and wild-type mice were found. In brainstem slices of wild-type mice, respiratory acidosis triggered robust elevations in [Ca(2+) ]i in astrocytes residing near the ventral surface of the medulla oblongata. The magnitude of CO2 -induced [Ca(2+) ]i responses in medullary astrocytes was markedly reduced in conditions of MeCP2 deficiency, whereas [Ca(2+) ]i responses to ATP were unaffected. These data suggest that (i) metabolic function of astrocytes in releasing lactate into the extracellular space is not affected by MeCP2 deficiency, and (ii) MeCP2 deficiency impairs the ability of medullary astrocytes to sense changes in PCO2/[H(+) ]. Taken together with the evidence of severely blunted ventilatory sensitivity to CO2 in mice with conditional MeCP2 deletion in astroglia, these data support the hypothesis of an important role played by astrocytes in central respiratory CO2 /pH chemosensitivity.




04/2015 | hypertension
Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat.
Marina N, Ang R, Machhada A, Kasymov V, Karagiannis A, Hosford PS, Mosienko V, Teschemacher AG, Vihko P, Paton JF, Kasparov S, Gourine AV

Abstract:
Systemic arterial hypertension has been previously suggested to develop as a compensatory condition when central nervous perfusion/oxygenation is compromised. Principal sympathoexcitatory C1 neurons of the rostral ventrolateral medulla oblongata (whose activation increases sympathetic drive and the arterial blood pressure) are highly sensitive to hypoxia, but the mechanisms of this O2 sensitivity remain unknown. Here, we investigated potential mechanisms linking brainstem hypoxia and high systemic arterial blood pressure in the spontaneously hypertensive rat. Brainstem parenchymal PO2 in the spontaneously hypertensive rat was found to be approximately 15 mm Hg lower than in the normotensive Wistar rat at the same level of arterial oxygenation and systemic arterial blood pressure. Hypoxia-induced activation of rostral ventrolateral medulla oblongata neurons was suppressed in the presence of either an ATP receptor antagonist MRS2179 or a glycogenolysis inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol, suggesting that sensitivity of these neurons to low PO2 is mediated by actions of extracellular ATP and lactate. Brainstem hypoxia triggers release of lactate and ATP which produce excitation of C1 neurons in vitro and increases sympathetic nerve activity and arterial blood pressure in vivo. Facilitated breakdown of extracellular ATP in the rostral ventrolateral medulla oblongata by virally-driven overexpression of a potent ectonucleotidase transmembrane prostatic acid phosphatase results in a significant reduction in the arterial blood pressure in the spontaneously hypertensive rats (but not in normotensive animals). These results suggest that in the spontaneously hypertensive rat, lower PO2 of brainstem parenchyma may be associated with higher levels of ambient ATP and l-lactate within the presympathetic circuits, leading to increased central sympathetic drive and concomitant sustained increases in systemic arterial blood pressure.




11/2014 | Cereb Cortex   IF 6.3
Characterization and distribution of Reelin-positive interneuron subtypes in the rat barrel cortex.
Pohlkamp T, David C, Cauli B, Gallopin T, Bouche E, Karagiannis A, May P, Herz J, Frotscher M, Staiger JF, Bock HH

Abstract:
GABAergic inhibitory interneurons (IN) represent a heterogeneous population with different electrophysiological, morphological, and molecular properties. The correct balance between interneuronal subtypes is important for brain function and is impaired in several neurological and psychiatric disorders. Here we show the data of 123 molecularly and electrophysiologically characterized neurons of juvenile rat barrel cortex acute slices, 48 of which expressed Reelin (Reln). Reln mRNA was exclusively detected in Gad65/67-positive cells but was found in interneuronal subtypes in different proportions: all cells of the adapting-Somatostatin (SST) cluster expressed Reln, whereas 63% of the adapting-neuropeptide Y (NPY, 50% of the fast-spiking Parvalbumin (PVALB), and 27% of the adapting/bursting-Vasoactive Intestinal Peptide (VIP) cluster were Reln-positive. Silhouette analysis revealed a high impact of the parameter Reln on cluster quality. By analyzing the co-localization of RELN immunoreactivity with those of different IN-markers, we found that RELN is produced layer-independently in SST-, NPY-, and NOS1-expressing INs, whereas co-localization of RELN and VIP was mostly absent. Of note, RELN co-localized with PVALB, predominantly in INs of layers IV/V (>30%). Our findings emphasize RELN's role as an important IN-marker protein and provide a basis for the functional characterization of Reln-expressing INs and its role in the regulation of inhibitory IN networks.




2013 | Front Neural Circuits   IF 3.1
Beyond the frontiers of neuronal types.
Battaglia D, Karagiannis A, Gallopin T, Gutch HW, Cauli B

Abstract:
Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes.




18/03/2009 | J Neurosci   IF 6
Classification of NPY-expressing neocortical interneurons.
Karagiannis A, Gallopin T, David C, Battaglia D, Geoffroy H, Rossier J, Hillman EM, Staiger JF, Cauli B

Abstract:
Neuropeptide Y (NPY) is an abundant neuropeptide of the neocortex involved in numerous physiological and pathological processes. Because of the large electrophysiological, molecular, and morphological diversity of NPY-expressing neurons their precise identity remains unclear. To define distinct populations of NPY neurons we characterized, in acute slices of rat barrel cortex, 200 cortical neurons of layers I-IV by means of whole-cell patch-clamp recordings, biocytin labeling, and single-cell reverse transcriptase-PCR designed to probe for the expression of well established molecular markers for cortical neurons. To classify reliably cortical NPY neurons, we used and compared different unsupervised clustering algorithms based on laminar location and electrophysiological and molecular properties. These classification schemes confirmed that NPY neurons are nearly exclusively GABAergic and consistently disclosed three main types of NPY-expressing interneurons. (1) Neurogliaform-like neurons exhibiting a dense axonal arbor, were the most frequent and superficial, and substantially expressed the neuronal isoform of nitric oxide synthase. (2) Martinotti-like cells characterized by an ascending axon ramifying in layer I coexpressed somatostatin and were the most excitable type. (3) Among fast-spiking and parvalbumin-positive basket cells, NPY expression was correlated with pronounced spike latency. By clarifying the diversity of cortical NPY neurons, this study establishes a basis for future investigations aiming at elucidating their physiological roles.