Neurocentre Magendie

Yeri-Esther HIEN

Tél : 33(0)5 57 57 37 59
Envoyer un email

PhD Universite Aix-Marseille (2014)
Post-Doctorante / Neurocentre Magendie (2015-2017)
Assistante Universitaire, Université de Ouagadougou, Burkina Faso

2 publication(s) depuis Septembre 2014:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

07/04/2017 | Nat Commun   IF 12.1
Defective Gpsm2/Galphai3 signalling disrupts stereocilia development and growth cone actin dynamics in Chudley-McCullough syndrome.
Mauriac SA, Hien YE, Bird JE, Carvalho SD, Peyroutou R, Lee SC, Moreau MM, Blanc JM, Geyser A, Medina C, Thoumine O, Beer-Hammer S, Friedman TB, Ruttiger L, Forge A, Nurnberg B*, Sans N*, Montcouquiol M*

Mutations in GPSM2 cause Chudley-McCullough syndrome (CMCS), an autosomal recessive neurological disorder characterized by early-onset sensorineural deafness and brain anomalies. Here, we show that mutation of the mouse orthologue of GPSM2 affects actin-rich stereocilia elongation in auditory and vestibular hair cells, causing deafness and balance defects. The G-protein subunit Galphai3, a well-documented partner of Gpsm2, participates in the elongation process, and its absence also causes hearing deficits. We show that Gpsm2 defines an approximately 200 nm nanodomain at the tips of stereocilia and this localization requires the presence of Galphai3, myosin 15 and whirlin. Using single-molecule tracking, we report that loss of Gpsm2 leads to decreased outgrowth and a disruption of actin dynamics in neuronal growth cones. Our results elucidate the aetiology of CMCS and highlight a new molecular role for Gpsm2/Galphai3 in the regulation of actin dynamics in epithelial and neuronal tissues.

17/09/2014 | FEBS Lett   IF 3.6
CK2 accumulation at the axon initial segment depends on sodium channel Nav1.
Hien YE, Montersino A, Castets F, Leterrier C, Filhol O, Vacher H, Dargent B

Accumulation of voltage-gated sodium channel Nav1 at the axon initial segment (AIS), results from a direct interaction with ankyrin G. This interaction is regulated in vitro by the protein kinase CK2, which is also highly enriched at the AIS. Here, using phosphospecific antibodies and inhibition/depletion approaches, we showed that Nav1 channels are phosphorylated in vivo in their ankyrin-binding motif. Moreover, we observed that CK2 accumulation at the AIS depends on expression of Nav1 channels, with which CK2 forms tight complexes. Thus, the CK2-Nav1 interaction is likely to initiate an important regulatory mechanism to finely control Nav1 phosphorylation and, consequently, neuronal excitability.