Page personnelle

Edgar SORIA




Chercheur Invite

Tél : 557573754
Envoyer un email


Poste actuel:
IKERBASQUE Researcher
Achucarro Basque Center for Neuroscience

https://www.achucarro.org/people/edgar-soria-gomez

Cursus:
PhD: UNAM, Mexique (2009)
Post-Doc: INSERM, Magendie (2009-2017)






27 publication(s) depuis Août 2007:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


23/08/2018 | Neuron   IF 14.3
Hippocampal CB1 Receptors Control Incidental Associations.
Busquets-Garcia A, Oliveira da Cruz JF, Terral G, Zottola ACP, Soria-Gomez E, Contini A, Martin H, Redon B, Varilh M, Ioannidou C, Drago F, Massa F, Fioramonti X, Trifilieff P, Ferreira G, Marsicano G

Abstract:
By priming brain circuits, associations between low-salience stimuli often guide future behavioral choices through a process known as mediated or inferred learning. However, the precise neurobiological mechanisms of these incidental associations are largely unknown. Using sensory preconditioning procedures, we show that type 1 cannabinoid receptors (CB1R) in hippocampal GABAergic neurons are necessary and sufficient for mediated but not direct learning. Deletion and re-expression of CB1R in hippocampal GABAergic neurons abolishes and rescues mediated learning, respectively. Interestingly, paired presentations of low-salience sensory cues induce a specific protein synthesis-dependent enhancement of hippocampal CB1R expression and facilitate long-term synaptic plasticity at inhibitory synapses. CB1R blockade or chemogenetic manipulations of hippocampal GABAergic neurons upon preconditioning affect incidental associations, as revealed by impaired mediated learning. Thus, CB1R-dependent control of inhibitory hippocampal neurotransmission mediates incidental associations, allowing future associative inference, a fundamental process for everyday life, which is altered in major neuropsychiatric diseases.




06/06/2018 | Neuron   IF 14.3
Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory.
Robin LM*, Cruz J*, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent M, Busquets-Garcia A, Bellocchio L, Soria-Gomez E, Papouin T, Varilh M, Sherwood MW, Belluomo I, Balcells G, Matias I, Bosier B, Drago F, Van Eeckhaut A, Smolders I, Georges F, Araque A, Panatier A, Oliet SHR*, Marsicano G*

Abstract:
Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1 receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1 receptors increased intracellular astroglial Ca(2+) levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.




26/02/2018 | Glia   IF 5.8
Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus.
Gutierrez-Rodriguez A, Bonilla-Del Rio I, Puente N, Gomez-Urquijo SM, Fontaine CJ, Egana-Huguet J, Elezgarai I, Ruehle S, Lutz B, Robin LM, Soria-Gomez E, Bellocchio L, Padwal JD, van der Stelt M, Mendizabal-Zubiaga J, Reguero L, Ramos A, Gerrikagoitia I, Marsicano G, Grandes P

Abstract:
Astroglial type-1 cannabinoid (CB1 ) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so-called tripartite synapse formed by pre- and post-synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock-out mice lacking astroglial CB1 receptor expression specifically in glial fibrillary acidic protein (GFAP)-containing astrocytes (GFAP-CB1 -KO mice) and also generated genetic rescue mice to re-express CB1 receptors exclusively in astrocytes (GFAP-CB1 -RS). To better identify astroglial structures by immunoelectron microscopy, global CB1 knock-out (CB1 -KO) mice and wild-type (CB1 -WT) littermates were intra-hippocampally injected with an adeno-associated virus expressing humanized renilla green fluorescent protein (hrGFP) under the control of human GFAP promoter to generate GFAPhrGFP-CB1 -KO and -WT mice, respectively. Furthermore, double immunogold (for CB1 ) and immunoperoxidase (for GFAP or hrGFP) revealed that CB1 receptors are present in astroglial mitochondria from different hippocampal regions of CB1 -WT, GFAP-CB1 -RS and GFAPhrGFP-CB1 -WT mice. Only non-specific gold particles were detected in mouse hippocampi lacking CB1 receptors. Altogether, we demonstrated the existence of a precise molecular architecture of the CB1 receptor in astrocytes that will have to be taken into account in evaluating the functional activity of cannabinergic signaling at the tripartite synapse.




20/06/2017 | bio protoc
Representation-mediated Aversion as a Model to Study Psychotic-like States in Mice.
Busquets-Garcia A, Soria-Gomez E, Ferreira G, Marsicano G

Abstract:
Several paradigms for rodent models of the cognitive and negative endophenotypes found in schizophrenic patients have been proposed. However, significant efforts are needed in order to study the pathophysiology of schizophrenia-related positive symptoms. Recently, it has been shown that these positive symptoms can be studied in rats by using representation-mediated learning. This learning measure the accuracy of mental representations of reality, also called 'reality testing'. Alterations in 'reality testing' performance can be an indication of an impairment in perception which is a clear hallmark of positive psychotic-like states. Thus, we describe here a mouse task adapted from previous findings based on a sensory preconditioning task. With this task, associations made between different neutral stimuli (e.g., an odor and a taste) and subsequent selective devaluation of one of these stimuli have allowed us to study mental sensory representations. Thus, the interest of this task is that it can be used to model positive psychotic-like states in mice, as recently described.




21/02/2017 | Mol Psychiatry   IF 11.6
Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice.
Busquets-Garcia A, Soria-Gomez E, Redon B, Mackenbach Y, Vallee M, Chaouloff F, Varilh M, Ferreira G, Piazza PV, Marsicano G

Abstract:
Cannabis-induced acute psychotic-like states (CIAPS) represent a growing health issue, but their underlying neurobiological mechanisms are poorly understood. The use of antipsychotics and benzodiazepines against CIAPS is limited by side effects and/or by their ability to tackle only certain aspects of psychosis. Thus, safer wide-spectrum treatments are currently needed. Although the blockade of cannabinoid type-1 receptor (CB1) had been suggested as a therapeutical means against CIAPS, the use of orthosteric CB1 receptor full antagonists is strongly limited by undesired side effects and low efficacy. The neurosteroid pregnenolone has been recently shown to act as a potent endogenous allosteric signal-specific inhibitor of CB1 receptors. Thus, we tested in mice the potential therapeutic use of pregnenolone against acute psychotic-like effects of Delta9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. We found that pregnenolone blocks a wide spectrum of THC-induced endophenotypes typically associated with psychotic-like states, including impairments in cognitive functions, somatosensory gating and social interaction. In order to capture THC-induced positive psychotic-like symptoms (e.g. perceptual delusions), we adapted a behavioral paradigm based on associations between different sensory modalities and selective devaluation, allowing the measurement of mental sensory representations in mice. Acting at hippocampal CB1 receptors, THC impaired the correct processing of mental sensory representations (reality testing) in an antipsychotic- and pregnenolone-sensitive manner. Overall, this work reveals that signal-specific inhibitors mimicking pregnenolone effects can be considered as promising new therapeutic tools to treat CIAPS.Molecular Psychiatry advance online publication, 21 February 2017; doi:10.1038/mp.2017.4.




09/11/2016 | Nature   IF 41.6
A cannabinoid link between mitochondria and memory.
Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, Zottola AC, Delamarre A, Cannich A, Vincent P, Varilh M, Robin LM, Terral G, Garcia-Fernandez MD, Colavita M, Mazier W, Drago F, Puente N, Reguero L, Elezgarai I, Dupuy JW, Cota D, Lopez-Rodriguez ML, Barreda-Gomez G, Massa F, Grandes P, Benard G, Marsicano G

Abstract:
Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Galphai protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.




2016 | f1000res   IF 1.1
Cannabinoid receptor type-1: breaking the dogmas.
Busquets Garcia A, Soria-Gomez E, Bellocchio L, Marsicano G

Abstract:
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.




23/09/2015 | Neuron   IF 14.3
Habenular CB Receptors Control the Expression of Aversive Memories.
Soria-Gomez E, Busquets-Garcia A, Hu F, Mehidi A, Cannich A, Roux L, Louit I, Alonso L, Wiesner T, Georges F, Verrier D, Vincent P, Ferreira G, Luo M, Marsicano G

Abstract:
Expression of aversive memories is key for survival, but the underlying brain mechanisms are not fully understood. Medial habenular (MHb) axons corelease glutamate and acetylcholine onto target postsynaptic interpeduncular (IPN) neurons, but their role in aversive memories has not been addressed so far. We found that cannabinoid type 1 receptors (CB1R), key regulators of aversive responses, are present at presynaptic terminals of MHb neurons in the IPN. Conditional deletion of CB1R from MHb neurons reduces fear-conditioned freezing and abolishes conditioned odor aversion in mice, without affecting neutral or appetitively motivated memories. Interestingly, local inhibition of nicotinic, but not glutamatergic receptors in the target region IPN before retrieval, rescues these phenotypes. Finally, optogenetic electrophysiological recordings of MHb-to-IPN circuitry revealed that blockade of CB1R specifically enhances cholinergic, but not glutamatergic, neurotransmission. Thus, presynaptic CB1R control expression of aversive memories by selectively modulating cholinergic transmission at MHb synapses in the IPN.




11/08/2015 | bioessays   IF 4.4
Dissecting the cannabinergic control of behavior: The where matters.
Busquets-Garcia A, Desprez T, Metna-Laurent M, Bellocchio L, Marsicano G, Soria-Gomez E

Abstract:
The endocannabinoid system is the target of the main psychoactive component of the plant Cannabis sativa, the Delta9 -tetrahydrocannabinol (THC). This system is composed by the cannabinoid receptors, the endogenous ligands, and the enzymes involved in their metabolic processes, which works both centrally and peripherally to regulate a plethora of physiological functions. This review aims at explaining how the site-specific actions of the endocannabinoid system impact on memory and feeding behavior through the cannabinoid receptors 1 (CB1 R). Centrally, CB1 R is widely distributed in many brain regions, different cell types (e.g. neuronal or glial cells) and intracellular compartments (e.g. mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB1 R according to their cell-type localization (e.g. glutamatergic or GABAergic neurons). Thus, understanding the cellular and subcellular function of CB1 R will provide new insights and aid the design of new compounds in cannabinoid-based medicine. Also watch the Video Abstract.




26/09/2014 | Mol Cell Endocrinol   IF 3.6
New insights on food intake control by olfactory processes: The emerging role of the endocannabinoid system.
Soria-Gomez E, Bellocchio L, Marsicano G

Abstract:
The internal state of the organism is an important modulator of perception and behavior. The link between hunger, olfaction and feeding behavior is one of the clearest examples of these connections. At the neurobiological level, olfactory circuits are the targets of several signals (i.e. hormones and nutrients) involved in energy balance. Indicating that olfactory areas are potential sensors of the internal state of the organism. Thus, the aim of this manuscript is to review the literature showing the interplay between metabolic signals in olfactory circuits and its impact on food intake.