Neurocentre Magendie



Tél : 33(0)5 57 57 37 02
Envoyer un email

13 publication(s) depuis Octobre 2006:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

06/2017 | horm metab res
Peripheral and Central Glucocorticoid Signaling Contributes to Positive Energy Balance in Rats.
Borba TK, Galindo LCM, Ferraz-Pereira KN, da Silva Aragao R, Toscano AE, Guzman-Quevedo O, Manhaes-de-Castro R

The obesity epidemic has been the target of several studies to understand its etiology. The pathophysiological processes that take to obesity generally relate to the rupture of energy balance. This imbalance can result from environmental and/or endogenous events. Among the endogenous events, the hypothalamic-pituitary-adrenal axis, which promotes stress response via glucocorticoid activity, is considered a modulator of energy balance. However, it remains controversial whether the increase in plasma levels of glucocorticoids results in a positive or negative energy balance. Furthermore, there are no studies comparing different routes of administration of glucocorticoids in this context. Here, we investigated the effects of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of a specific agonist for glucocorticoid receptors on food intake and energy expenditure in rats. Sixty-day old rats were treated with i.p. or i.c.v. dexamethasone. Food intake and satiety were evaluated, as well as locomotor activity in order to determine energy expenditure. Both i.p. and i.c.v. dexamethasone increased food intake and decreased energy expenditure. Moreover, i.c.v. dexamethasone delayed the onset of satiety. Together, these results confirm that central glucocorticoid signaling promotes a positive energy balance and supports the role of the glucocorticoid system as the underlying cause of psychological stress-induced obesity.

01/05/2017 | Physiol Behav   IF 2.3
Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats.
Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, Manhaes-de-Castro R, Toscano AE

The aim of the present study was to investigate the effect of perinatal undernutrition on the sensorimotor pattern of chewing in rats submitted to cerebral palsy experimental model. A total of 60 male Wistar rats were randomly distributed into four groups: Nourished/Control (NC, n=15), Nourished/Cerebral Palsy (NCP, n=15); Undernourished/Control (UC, n=15) and Undernourished/Cerebral Palsy (UCP, n=15). Animals of cerebral palsy (CP) group were subjected to an experimental model based on the combination of perinatal anoxia associated with sensorimotor restriction of the hindlimb. In the rats were evaluated body weight gain, intake of breast milk, feed post-weaning consumption, parameters of the chewing, intra-oral sensitivity and muscle properties (muscle weight and distribution of types of fibers) of the masseter and digastric. Animals from undernourished CP group showed greater reduction in most data evaluated including body weight (P<0.05), food intake post-weaning (P<0.05), frequency of chewing cycles (P<0.05), duration of the reactions of 'taste' (P<0.05), muscle weight and decrease of the proportion of type IIB fibers in the masseter muscle (P<0.05). These results demonstrated in rats submitted a cerebral palsy that perinatal undernutrition intensifies the damage in morphological and functional parameters of chewing.

30/11/2016 | Diabetes   IF 8.7
Inhibiting Microglia Expansion Prevents Diet-induced Hypothalamic and Peripheral Inflammation.
Andre C, Guzman-Quevedo O, Rey C, Remus-Borel J, Clark S, Castellanos-Jankiewicz A, Ladeveze E, Leste-Lasserre T, Nadjar A, Abrous DN, Laye S, Cota D

Cell proliferation and neuroinflammation in the adult hypothalamus may contribute to the pathogenesis of obesity. Here we tested whether the intertwining of these two processes has a role in the metabolic changes caused by three weeks of saturated high-fat diet (HFD) consumption.As compared to chow, HFD-fed mice rapidly increased body weight and fat mass, and specifically showed increased microglia number in the arcuate nucleus (ARC) of the hypothalamus. Microglia expansion required the adequate presence of fats and carbohydrates in the diet, since feeding mice a very high-fat, very low-carbohydrate diet did not affect cell proliferation. Blocking HFD-induced cell proliferation by central delivery of the antimitotic drug arabinofuranosyl cytidine (AraC) blunted food intake, body weight gain and adiposity. AraC treatment completely prevented the increase in the number of activated microglia in the ARC, the expression of the pro-inflammatory cytokine TNFalpha in microglia and the recruitment of the NF-kappaB pathway, while restoring hypothalamic leptin sensitivity. Central blockade of cell proliferation also normalized circulating levels of the cytokines leptin and IL-1beta and decreased peritoneal pro-inflammatory CD86-IR macrophages number.These findings suggest that inhibition of diet-dependent microglia expansion hinders body weight gain while preventing central and peripheral inflammatory responses due to caloric overload.

19/05/2016 | Int J Dev Neurosci   IF 2
Effects of maternal low-protein diet on parameters of locomotor activity in a rat model of cerebral palsy.
Silva KO, Pereira SD, Portovedo M, Milanski M, Galindo LC, Guzman-Quevedo O, Manhaes-De-Castro R, Toscano AE

Children with cerebral palsy have feeding difficulties that can contribute to undernutrition. The aim of this study was to investigate the effect of early undernutrition on locomotor activity and the expression of the myofibrillar protein MuRF-1 in an experimental model of cerebral palsy (CP). In order to achieve this aim, pregnant rats were divided into two groups according to the diet provided: Normal Protein (NP, n=9) and Low Protein (LP, n=12) groups. After birth, the pups were divided into four groups: Normal Protein Sham (NPS, n=16), Normal Protein Cerebral Palsy (NPCP, n=21), Low Protein Sham (LPS, n=20) and Low Protein Cerebral Palsy (LPCP, n=18) groups. The experimental cerebral palsy protocol consisted of two episodes of anoxia at birth and during the first days of life. Each day, nitrogen flow was used (9l/min during 12min). After nitrogen exposure, sensorimotor restriction was performed 16h per day, from the 2nd to the 28th postnatal day (PND). Locomotor activity was evaluated at 8th, 14th, 17th, 21th and 28th PND. At PND 29, soleus muscles were collected to analyse myofibrillar protein MuRF-1. Our results show that CP animals decreased body weight (p<0.001), which were associated with alterations of various parameters of locomotor activity (p<0.05), compared to their control. Undernourished animals also showed a decrease (p<0.05) in body weight and locomotor activity parameters. Moreover, CP decreased MuRF-1 levels in nourished rats (p=0.015) but not in undernourished rats. In summary, perinatal undernutrition exacerbated the negative effects of cerebral palsy on locomotor activity and muscle atrophy, but it appears not be mediated by changes in MuRF-1 levels.

Numerous epidemiological studies indicate that malnutrition during in utero development and/or childhood induces long-lasting learning disabilities and enhanced susceptibility to develop psychiatric disorders. However, animal studies aimed to address this question have yielded inconsistent results due to the use of learning tasks involving negative or positive reinforces that interfere with the enduring changes in emotional reactivity and motivation produced by in utero and neonatal malnutrition. Consequently, the mechanisms underlying the learning deficits associated with malnutrition in early life remain unknown. Here we implemented a behavioural paradigm based on the combination of the novel object recognition and the novel object location tasks to define the impact of early protein-restriction on the behavioural, cellular and molecular basis of memory processing. Adult rats born to dams fed a low-protein diet during pregnancy and lactation, exhibited impaired encoding and consolidation of memory resulting from impaired pattern separation. This learning deficit was associated with reduced production of newly born hippocampal neurons and down regulation of BDNF gene expression. These data sustain the existence of a causal relationship between early malnutrition and impaired learning in adulthood and show that decreased adult neurogenesis is associated to the cognitive deficits induced by childhood exposure to poor nutrition.

02/12/2014 | Endocrinology   IF 4.3
Cannabinoid type 1 (CB) receptors on Sim1-expressing neurons regulate energy expenditure in male mice.
Cardinal P, Bellocchio L, Guzman-Quevedo O, Andre C, Clark S, Elie M, Leste-Lasserre T, Gonzales D, Cannich A, Marsicano G, Cota D

The paraventricular nucleus of the hypothalamus (PVN) regulates energy balance by modulating not only food intake, but also energy expenditure and brown adipose tissue (BAT) thermogenesis. To test the hypothesis that cannabinoid type 1 (CB1) receptor in PVN neurons might control these processes, we used the Cre/loxP system to delete CB1 from Single minded 1 (Sim1) neurons, which account for the majority of PVN neurons. On standard chow, mice lacking CB1 receptor in Sim1 neurons (Sim1-CB1-KO) had food intake, body weight, adiposity, glucose metabolism and energy expenditure comparable to wild-type (Sim1-CB1-WT) littermates. However, maintenance on a high-fat diet (HFD) revealed a gene-by-diet interaction whereby Sim1-CB1-KO mice had decreased adiposity, improved insulin sensitivity and increased energy expenditure, while feeding behavior was similar to Sim1-CB1-WT mice. Additionally, HFD-fed Sim1-CB1-KO mice had increased mRNA expression of the beta3-adrenergic receptor, as well as of UCP-1, Cox-IV and Tfam in the BAT, all molecular changes suggestive of increased thermogenesis. Pharmacological studies using beta-blockers suggested that modulation of beta-adrenergic transmission play an important role in determining energy expenditure changes observed in Sim1-CB1-KO. Finally, chemical sympathectomy abolished the obesity-resistant phenotype of Sim1-CB1-KO mice. Altogether, these findings reveal a diet-dependent dissociation in the CB1 receptor control of food intake and energy expenditure, likely mediated by the PVN, where CB1 receptors on Sim1-positive neurons do not impact food intake, but hinder energy expenditure during dietary environmental challenges that promote body weight gain.

08/2014 | Br J Nutr   IF 3.7
Maternal protein restriction impairs the transcriptional metabolic flexibility of skeletal muscle in adult rat offspring.
da Silva Aragao R, Guzman-Quevedo O, Perez-Garcia G, Manhaes-de-Castro R, Bolanos-Jimenez F

Skeletal muscle exhibits a remarkable flexibility in the usage of fuel in response to the nutrient intake and energy demands of the organism. In fact, increased physical activity and fasting trigger a transcriptional programme in skeletal muscle cells leading to a switch from carbohydrate to lipid oxidation. Impaired metabolic flexibility has been reported to be associated with obesity and type 2 diabetes, but it is not known whether the disability to adapt to metabolic demands is a cause or a consequence of these pathological conditions. Inasmuch as a poor nutritional environment during early life is a predisposing factor for the development of metabolic diseases in adulthood, in the present study, we aimed to determine the long-term effects of maternal malnutrition on the metabolic flexibility of offspring skeletal muscle. To this end, the transcriptional responses of the soleus and extensor digitorum longus muscles to fasting were evaluated in adult rats born to dams fed a control (17 % protein) or a low-protein (8 % protein, protein restricted (PR)) diet throughout pregnancy and lactation. With the exception of reduced body weight and reduced plasma concentrations of TAG, PR rats exhibited a metabolic profile that was the same as that of the control rats. In the fed state, PR rats exhibited an enhanced expression of key regulatory genes of fatty acid oxidation including CPT1a, PGC-1alpha, UCP3 and PPARalpha and an impaired expression of genes that increase the capacity for fat oxidation in response to fasting. These results suggest that impaired metabolic inflexibility precedes and may contribute to the development of metabolic disorders associated with early malnutrition.

01/2014 | acta physiol (oxf)   IF 4.9
Differential developmental programming by early protein restriction of rat skeletal muscle according to its fibre-type composition.
da Silva Aragao R, Guzman-Quevedo O, Perez-Garcia G, Toscano AE, Gois Leandro C, Manhaes-de-Castro R, Bolanos-Jimenez F

AIMS: Differences in fibre-type composition of skeletal muscle have been associated with obesity and insulin resistance. As a poor nutrient environment early in life is a predisposing factor for the development of obesity and related metabolic diseases at adulthood, this study aimed at determining the long-term consequences of maternal undernutrition on the structural and metabolic properties of two skeletal muscles characterized by their different fibre-type composition and metabolic properties. METHODS: The fibre-type composition and enzymatic activities of hexokinase (HK), beta-hydroxyacyl-CoA dehydrogenase (beta-HAD) and citrate synthase (CS) were measured in soleus and extensor digitorum longus (EDL) muscles from adult rats born to dams fed a control (17% protein) or a low-protein [8% protein (PR)] diet throughout pregnancy and lactation. In addition, the expression levels of several genes regulating glycolysis, fatty acid oxidation and mitochondrial biogenesis were determined by real-time PCR. RESULTS: Protein rats exhibited enhanced density of type II fibres along with decreased rate of fatty acid oxidation and glycolysis in soleus but not EDL. Malnourished rats exhibited also a different gene expression profile in soleus and EDL. Altogether, these alterations correspond to a state of energy deficiency and are present in animals which do not show yet any sign of obesity or glucose intolerance. CONCLUSION: We conclude that maternal protein restriction alters in the long term the structural and enzymatic properties of offspring skeletal muscle in a fibre-type-dependent manner. These alterations might have a causative role in the development of obesity and related metabolic disorders later in life.

2013 | PLoS ONE   IF 2.8
Impaired hypothalamic mTOR activation in the adult rat offspring born to mothers fed a low-protein diet.
Guzman-Quevedo O, Da Silva Aragao R, Perez Garcia G, Matos RJ, de Sa Braga Oliveira A, Manhaes de Castro R, Bolanos-Jimenez F

Several epidemiological and experimental studies have clearly established that maternal malnutrition induces a high risk of developing obesity and related metabolic diseases in the offspring. To determine if altered nutrient sensing might underlie this enhanced disease susceptibility, here we examined the effects of perinatal protein restriction on the activation of the nutrient sensor mTOR in response to acute variations in the nutritional status of the organism. Female Wistar rats were fed isocaloric diets containing either 17% protein (control) or 8% protein (PR) throughout pregnancy and lactation. At weaning offspring received standard chow and at 4 months of age the effects of fasting or fasting plus re-feeding on the phosphorylation levels of mTOR and its downstream target S6 ribosomal protein (rpS6) in the hypothalamus were assessed by immuno-fluorescence and western blot. Under ad libitum feeding conditions, PR rats exhibited decreased mTOR and rpS6 phosphorylation in the arcuate (ARC) and ventromedial (VMH) hypothalamic nuclei. Moreover, the phosphorylation of mTOR and rpS6 in these hypothalamic nuclei decreased with fasting in control but not in PR animals. Conversely, PR animals exhibited enhanced number of pmTOR imunostained cells in the paraventricular nucleus (PVN) and fasting decreased the activation of mTOR in the PVN of malnourished but not of control rats. These alterations occurred at a developmental stage at which perinatally-undernourished animals do not show yet obesity or glucose intolerance. Collectively, our observations suggest that altered hypothalamic nutrient sensing in response to an inadequate foetal and neonatal energetic environment is one of the basic mechanisms of the developmental programming of metabolic disorders and might play a causing role in the development of the metabolic syndrome induced by malnutrition during early life.

2013 | PLoS ONE   IF 2.8
Long-lasting effect of perinatal exposure to L-tryptophan on circadian clock of primary cell lines established from male offspring born from mothers fed on dietary protein restriction.
Nascimento E, Guzman-Quevedo O, Delacourt N, da Silva Aragao R, Perez-Garcia G, de Souza SL, Manhaes-de-Castro R, Bolanos-Jimenez F, Kaeffer B

BACKGROUND AIMS: Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation. METHODS: Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45-55 days) and adult (110-130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin. RESULTS: Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p = 0.0291) and adult (p = 0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p = 0.049), daily bolus (p<0.0001) and synchronizer hours (p = 0.0002). All factors were significantly interacting (p = 0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase. CONCLUSIONS: Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines.