Page personnelle



Tél : 33(0)5 57 57 36 93
Envoyer un email

17 publication(s) depuis Janvier 1991:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

09/12/2019 | J Neurosci Methods   IF 2.8
Alpha technology: A powerful tool to detect mouse brain intracellular signaling events.
Zanese M*, Tomaselli G*, Roullot-Lacarriere V, Moreau M, Bellocchio L, Grel A, Marsicano G, Sans N, Vallee M, Revest JM

BACKGROUND: Phosphorylation by protein kinases is a fundamental molecular process involved in the regulation of signaling activities in living organisms. Understanding this complex network of phosphorylation, especially phosphoproteins, is a necessary step for grasping the basis of cellular pathophysiology. Studying brain intracellular signaling is a particularly complex task due to the heterogeneous complex nature of the brain tissue, which consists of many embedded structures. NEW METHOD: Overcoming this degree of complexity requires a technology with a high throughput and economical in the amount of biological material used, so that a large number of signaling pathways may be analyzed in a large number of samples. We have turned to Alpha (Amplified Luminescent Proximity Homogeneous Assay) technology. COMPARISON WITH EXISTING METHOD: Western blot is certainly the most commonly used method to measure the phosphorylation state of proteins. Even though Western blot is an accurate and reliable method for analyzing modifications of proteins, it is a time-consuming and large amounts of samples are required. Those two parameters are critical when the goal of the research is to comprehend multi-signaling proteic events so as to analyze several targets from small brain areas. RESULT: Here we demonstrate that Alpha technology is particularly suitable for studying brain signaling pathways by allowing rapid, sensitive, reproducible and semi-quantitative detection of phosphoproteins from individual mouse brain tissue homogenates and from cell fractionation and synaptosomal preparations of mouse hippocampus. CONCLUSION: Alpha technology represents a major experimental step forward in unraveling the brain phosphoprotein-related molecular mechanisms involved in brain-related disorders.

09/2014 | Mol Psychiatry   IF 12
BDNF-TrkB signaling through Erk1/2 MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids.
Revest JM, Le Roux A, Roullot-Lacarriere V, Kaouane N, Vallee M, Kasanetz F, Rouge-Pont F, Tronche F, Desmedt A, Piazza PV

Activation of glucocorticoid receptors (GR) by glucocorticoid hormones (GC) enhances contextual fear memories through the activation of the Erk1/2(MAPK) signaling pathway. However, the molecular mechanism mediating this effect of GC remains unknown. Here we used complementary molecular and behavioral approaches in mice and rats and in genetically modified mice in which the GR was conditionally deleted (GR(NesCre)). We identified the tPA-BDNF-TrkB signaling pathway as the upstream molecular effectors of GR-mediated phosphorylation of Erk1/2(MAPK) responsible for the enhancement of contextual fear memory. These findings complete our knowledge of the molecular cascade through which GC enhance contextual fear memory and highlight the role of tPA-BDNF-TrkB-Erk1/2(MAPK) signaling pathways as one of the core effectors of stress-related effects of GC.

03/01/2014 | Science   IF 41
Pregnenolone can protect the brain from cannabis intoxication.
Vallee M, Vitiello S, Bellocchio L, Hebert-Chatelain E, Monlezun S, Martin-Garcia E, Kasanetz F, Baillie GL, Panin F, Cathala A, Roullot-Lacarriere V, Fabre S, Hurst DP, Lynch DL, Shore DM, Deroche-Gamonet V, Spampinato U, Revest JM, Maldonado R, Reggio PH, Ross RA, Marsicano G, Piazza PV

Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Delta(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.

15/06/2011 | J Neurosci Methods   IF 2.8
Western blot detection of brain phosphoproteins after performing Laser Microdissection and Pressure Catapulting (LMPC).
Maitre M, Roullot-Lacarriere V, Piazza PV, Revest JM

The Central Nervous System (CNS) is constituted of complex and specific anatomical regions that cluster together and interact with each other with the ultimate objective of receiving and delivering information. This information is characterized by selective biochemical changes that happen within specific brain sub-regions. Most of these changes involve a dynamic balance between kinase and phosphatase activities. The fine-tuning of this kinase/phosphatase balance is thus critical for neuronal adaptation, transition to long-term responses and higher brain functions including specific behaviors. Data emerging from several biological systems may suggest that disruption of this dynamic cell signaling balance within specific brain sub-regions leads to behavioral impairments. Therefore, accurate and powerful techniques are required to study global changes in protein expression levels and protein activities in specific groups of cells. Laser-based systems for tissue microdissection represent a method of choice enabling more accurate proteomic profiling. The goal of this study was to develop a methodological approach using Laser Microdissection and Pressure Catapulting (LMPC) technology combined with an immunoblotting technique in order to specifically detect the expression of phosphoproteins in particular small brain areas.

2009 | PLoS ONE   IF 2.8
Transcriptional effects of glucocorticoid receptors in the dentate gyrus increase anxiety-related behaviors.
Sarrazin N*, Di Blasi F*, Roullot-Lacarriere V, Rouge-Pont F, Leroux A, Costet P, Revest JM*, Piazza PV*


10/2006 | mol carcinog   IF 3.4
Diversity of contactin mRNA in human brain tumors.
Rome C, Loiseau H, Arsaut J, Roullot-Lacarriere V, Couillaud F

In order to address the molecular signature of human glioma, we investigated the polymorphism of 5'UTR of the mRNA of Contactin, an adhesion molecule which plays a role in the invasive behavior of these tumors. Contactin mRNA is identified by RT-PCR and a strategy based on rapid amplification of cDNA ends (RACE) reveals different 5'UTRs resulting from both an alternative use of two types of leader exons and a splicing mechanism within the 5'UTR. The spliced exon is an Alu-containing element specific to the primate lineage, thus indicating a recent evolution of regulatory processes specific to the simian line that occurs on this gene. Each 5'UTR exhibits different transcription/translation efficiencies and contains features that allow translation to occur independently of the classic cap-dependent mechanism. These data illustrate the complex regulation of Contactin expression in human brain tumors occurring at both transcriptional and translation levels. The different 5'UTRs are differentially expressed in diverse types of human tumors. Thus, the polymorphism occurring within the non-coding part of the Contactin mRNA reveals new opportunities to explore deregulation that occurs during the oncogenic process.

13/09/2005 | Brain Res Mol Brain Res   IF 2.8
Polymorphism of the untranslated regions of the F3/contactin mRNA in the rat nervous system.
Rome C, Roullot-Lacarriere V, Couillaud F

F3/contactin is a neural adhesion molecule implicated in various physiological processes. In rat brain tissues, we cloned various mRNA with the same coding region but differing in 3' and 5'UTR. The 3'UTR presents two polyadenylation signals. At the 5' end, we identified two leader exons, multiple transcription initiation sites and splicing events, leading to at least 19 different 5'UTR. The F3/contactin rat gene differs from the mouse gene for two reasons: (1) it contains two additional untranslated exons that are alternatively spliced and (2) it lacks the homologue mouse untranslated exon 0.

To analyze the transcriptional activity of the gene encoding the alpha subunit of the platelet integrin alpha(IIb)beta(3) during the hematopoietic differentiation, mice were produced in which the herpes virus thymidine kinase (tk) was introduced in this megakaryocytic specific locus using homologous recombination technology. This provided a convenient manner in which to induce the eradication of particular hematopoietic cells expressing the targeted gene. Results of progenitor cell cultures and long-term bone marrow (BM) assays showed that the growth of a subset of stem cells was reduced in the presence of the antiherpetic drug ganciclovir, demonstrating that the activation of the toxic gene occurs before the commitment to the megakaryocytic lineage. Furthermore the knock-in of the tk gene into the alpha(IIb) locus resulted in the knock-out of the alpha(IIb )gene in homozygous mice. Cultures of BM cells of these animals, combined with ultrastructural analysis, established that the alpha(IIb) glycoprotein is dispensable for lineage commitment and megakaryocytic maturation. Platelets collected from alpha(IIb)-deficient mice failed to bind fibrinogen, to aggregate, and to retract a fibrin clot. Moreover, platelet alpha-granules did not contain fibrinogen. Consistent with these characteristics, the mice displayed bleeding disorders similar to those in humans with Glanzmann thrombasthenia. (Blood. 2000;96:1399-1408)

05/1999 | Development   IF 5.8
Role of vascular endothelial-cadherin in vascular morphogenesis.
Gory-Faure S, Prandini MH, Pointu H, Roullot-Lacarriere V, Pignot-Paintrand I, Vernet M, Huber P

Vascular endothelial (VE)-cadherin is an adhesive transmembrane protein specifically expressed at interendothelial junctions. Its extracellular domain exhibits Ca2+-dependent homophilic reactivity, promoting cell-cell recognition. Mice deficient in VE-cadherin die at mid-gestation resulting from severe vascular defects. At the early phases of vascular development (E8.5) of VE-cadherin-deficient embryos, in situ differentiation of endothelial cells was delayed although their differentiation program appeared normal. Vascularization was defective in the anterior part of the embryo, while dorsal aortae and vitelline and umbilical arteries formed normally in the caudal part. At E9.25, organization of endothelial cells into large vessels was incomplete and angiogenesis was impaired in mutant embryos. Defects were more severe in extraembryonic vasculature. Blood islands of the yolk sac and clusters of angioblasts in allantois failed to establish a capillary plexus and remained isolated. This was not due to defective cell-cell recognition as endothelial cells formed intercellular junctions, as shown by electron microscopy. These data indicate that VE-cadherin is dispensable for endothelial homophilic adhesion but is required for vascular morphogenesis.

15/09/1998 | Blood   IF 16.6
Ultrastructural analysis of bone marrow hematopoiesis in mice transgenic for the thymidine kinase gene driven by the alpha IIb promoter.
Poujol C, Tronik-Le Roux D, Tropel P, Roullot-Lacarriere V, Nurden A, Marguerie G, Nurden P

Transgenic mice have been generated with expression of the herpes virus thymidine kinase gene directed by a 2.7-kb fragment of the alphaIIb murine promoter of the gene encoding the alphaIIb-subunit of the platelet integrin alphaIIbbeta3 (Tropel et al, Blood 90:2995, 1997). Administration of ganciclovir (GCV) to these mice resulted not only in an acute cessation of platelet production due to the depletion of the megakaryocytic lineage, but also a decrease in erythrocyte and leukocyte numbers. Immunogold staining on ultrathin frozen sections and electron microscopy has now shown that the remaining population of immature hematopoietic cells contain a high proportion of Sca-1(+) and CD34(+) cells, with CD45R+ cells of the lymphopoietic lineage being maintained. Stromal cells were also preserved. Blood thrombopoietin levels were high. At 4 days of the recovery phase, Sca-1 and CD34 antigen expression decreased with intense proliferation of cells of the three lineages, with megakaryocyte (MK) progenitors being identified by their positivity for glycoprotein IIb-IIIa. These results suggest that transcriptional activity for the alphaIIb gene promoter was present on pluripotent hematopoietic stem cells. At 6 to 8 days after cessation of GCV, numerous mature MK were observed, some of them with deformed shapes crossing the endothelial barrier through thin apertures. Proplatelet production was visualized in the vascular sinus. After 15 days, circulating platelet levels had increased to approximately 65% of normal. Transgenic alphaIIb-tk mice constitute a valuable model to study in vivo megakaryocytopoiesis.