Neurocentre Magendie



Tél : 33(0)5 57 57 37 57
Envoyer un email

78 publication(s) depuis Décembre 1983:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

The serotonin2B receptor (5-HT2BR), which was first cloned and characterized in the rat stomach fundus, is the most recent addition to the 5-HT2R family. While its involvement in the regulation of gastrointestinal, vascular, pulmonary and cardiac physiology has been widely investigated, its functional role within the central nervous system (CNS) has received much less attention. Nevertheless, when considering the data available in the literature with regards to the regulatory control exerted by the central 5-HT2BR on dopamine (DA) and serotonin (5-HT) neuron activity, a very interesting picture emerges and highlights the key role of these receptors for future therapeutic strategies of DA-related neuropsychiatric disorders. Thus, the present review, by compiling molecular, biochemical, electrophysiological and behavioral findings from the literature of the past twenty years, aims at providing a sound analysis of the current knowledge supporting the interest of the central 5-HT2BR for future therapeutic avenues. First, we recall the neuroanatomical and functional data supporting the therapeutic relevance of the 5-HT/DA interaction in the CNS. Thereafter, after a short overview of the central expression and molecular properties of the 5-HT2BR, as well as of the 5-HT2BR agonists and antagonists available in the market, we will focus on the functional role of this receptor in the control of 5-HT, DA and neuroglia activity in the rodent brain. Finally, the therapeutic potential of 5-HT2BR antagonists for improved treatment of schizophrenia and drug addiction will be discussed.

05/04/2017 | Neuropharmacology   IF 5
Opposite control of mesocortical and mesoaccumbal dopamine pathways by serotonin2B receptor blockade: Involvement of medial prefrontal cortex serotonin1A receptors.
Devroye C, Haddjeri N, Cathala A, Rovera R, Drago F, Piazza PV, Artigas F, Spampinato U

Recent studies have shown that serotonin2B receptor (5-HT2BR) antagonists exert opposite facilitatory and inhibitory effects on dopamine (DA) release in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAc), respectively, thereby leading to the proposal that these compounds could provide an interesting pharmacological tool for treating schizophrenia. Although the mechanisms underlying these effects remain unknown, several data in the literature suggest that 5-HT1ARs located into the mPFC could participate in this interaction. The present study, using in vivo microdialysis and electrophysiological recordings in rats, assessed this hypothesis by means of two selective 5-HT1AR (WAY 100635) and 5-HT2BR (RS 127445) antagonists. WAY 100635, administered either subcutaneously (0.16 mg/kg, s.c) or locally into the mPFC (0.1 muM), blocked the changes of mPFC and NAc DA release induced by the intraperitoneal administration of RS 127445 (0.16 mg/kg, i.p.). The administration of RS 127445 (0.16 mg/kg, i.p.) increased both dorsal raphe nucleus (DRN) 5-HT neuron firing rate and 5-HT outflow in the mPFC. Likewise, mPFC 5-HT outflow was increased following the intra-DRN injection of RS 127445 (0.032 mug/0.2 mul). Finally, intra-DRN injection of RS 127445 increased and decreased DA outflow in the mPFC and the NAc, respectively, these effects being reversed by the intra-mPFC perfusion of WAY 100635. These results demonstrate the existence of a functional interplay between mPFC 5-HT1ARs and DRN 5-HT2BRs in the control of the DA mesocorticolimbic system, and highlight the clinical interest of this interaction, as both receptors represent an important pharmacological target for the treatment of schizophrenia.

31/05/2016 | Neuropharmacology   IF 5
Differential control of dopamine ascending pathways by serotonin2B receptor antagonists: New opportunities for the treatment of schizophrenia.
Devroye C, Cathala A, Haddjeri N, Rovera R, Vallee M, Drago F, Piazza PV, Spampinato U

Recent studies suggest that the central serotonin2B receptor (5-HT2BR) could be an interesting pharmacological target for treating neuropsychiatric disorders related to dopamine (DA) dysfunction, such as schizophrenia. Thus, the present study was aimed at characterizing the role of 5-HT2BRs in the control of ascending DA pathway activity. Using neurochemical, electrophysiological and behavioral approaches, we assessed the effects of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on in vivo DA outflow in DA-innervated regions, on mesencephalic DA neuronal firing, as well as in behavioral tests predictive of antipsychotic efficacy and tolerability, such as phencyclidine (PCP)-induced deficit in novel object recognition (NOR) test, PCP-induced hyperlocomotion and catalepsy. Both RS 127445 (0.16 mg/kg, i.p.) and LY 266097 (0.63 mg/kg, i.p.) increased DA outflow in the medial prefrontal cortex (mPFC). RS 127445, devoid of effect in the striatum, decreased DA outflow in the nucleus accumbens, and potentiated haloperidol (0.1 mg/kg, s.c.)-induced increase in mPFC DA outflow. Also, RS 127445 decreased the firing rate of DA neurons in the ventral tegmental area, but had no effect in the substantia nigra pars compacta. Finally, both RS 127445 and LY 266097 reversed PCP-induced deficit in NOR test, and reduced PCP-induced hyperlocomotion, without inducing catalepsy. These results demonstrate that 5-HT2BRs exert a differential control on DA pathway activity, and suggest that 5-HT2BR antagonists could represent a new class of drugs for improved treatment of schizophrenia, with an ideal profile of effects expected to alleviate cognitive and positive symptoms, without eliciting extrapyramidal symptoms.

27/11/2015 | Neuropsychopharmacology   IF 6.4
Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.
Martin-Garcia E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutierrez-Rodriguez A, Reguero L, Fiancette JF, Grandes P, Spampinato U, Maldonado R, Piazza PV, Marsicano G, Deroche-Gamonet V

The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine-seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.Neuropsychopharmacology accepted article preview online, 27 November 2015. doi:10.1038/npp.2015.351.

25/06/2015 | Neuropharmacology   IF 5
Central serotonin receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.
Devroye C, Cathala A, Di Marco B, Caraci F, Drago F, Piazza PV, Spampinato U

The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction.

01/11/2014 | Neuropharmacology   IF 5
Serotonin receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow.
Devroye C, Cathala A, Maitre M, Piazza PV, Abrous DN, Revest JM, Spampinato U

The serotonin2C receptor (5-HT2CR) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT2CRs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT2CR agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT2CR antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT2CRs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum.

In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity.

03/01/2014 | Science   IF 37.2
Pregnenolone can protect the brain from cannabis intoxication.
Vallee M, Vitiello S, Bellocchio L, Hebert-Chatelain E, Monlezun S, Martin-Garcia E, Kasanetz F, Baillie GL, Panin F, Cathala A, Roullot-Lacarriere V, Fabre S, Hurst DP, Lynch DL, Shore DM, Deroche-Gamonet V, Spampinato U, Revest JM, Maldonado R, Reggio PH, Ross RA, Marsicano G, Piazza PV

Get Full Text on Science
Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Delta(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.

2014 | j alzheimers dis   IF 3.7
Natural history of functional decline in Alzheimer's disease: a systematic review.
Delva F, Auriacombe S, Letenneur L, Foubert-Samier A, Bredin A, Clementy A, Latxague C, Puymirat E, Ballan G, Delabrousse-Mayoux JP, Glenisson L, Mazat L, Spampinato U, Rainfray M, Tison F, Dartigues JF

BACKGROUND: Knowledge of functional evolution in dementia is crucial for the patients and their families as well as the clinician. OBJECTIVE: This review identifies scales and outcomes used to describe the natural history of functional decline and describes the natural history of functional decline in a representative clinical population sample of published studies of patients with Alzheimer's disease (AD). METHODS: A search of three relevant databases was conducted and limited to articles published in English and French between 1998 to March 2012, using the keywords 'Dementia', 'Activities of Daily Living', 'Instrumental Activities of Daily Living', 'Functional Impairment', 'Prognosis', and 'Disease Progression'. RESULTS: The search strategy displayed 683 articles, 20 of which were found to be related to the functional evolution of AD. In these studies, different scales were used to describe the evolution of the functional decline, except for the decline of instrumental activities, for which the Lawton scale was used in all studies. Thus, it is difficult to represent the evolution of the functional decline from a clinical point of view. CONCLUSION: Relatively little data are available to estimate the functional evolution of AD. A consensus with broadened thought is required to know if the progression of the incapacities in these scales is additive or hierarchical.

10/2013 | Exp Brain Res   IF 1.9
Serotonin2C receptors and drug addiction: focus on cocaine.
Devroye C, Filip M, Przegalinski E, McCreary AC, Spampinato U

This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.