Page personnelle



Tél :
Envoyer un email

MD: Radiology, Bordeaux (2008)
PhD: Neurosciences, Bordeaux (2011)
Post doc: Stanford University, CA, USA (2013)
Professeur des Universit├ęs - Praticien Hospitalier; PU PH (2016)

76 publication(s) depuis Décembre 2006:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

02/2020 | Stroke   IF 6
Normal-Appearing White Matter Integrity Is a Predictor of Outcome After Ischemic Stroke.
Sagnier S, Catheline G, Dilharreguy B, Linck PA, Coupe P, Munsch F, Bigourdan A, Debruxelles S, Poli M, Olindo S, Renou P, Rouanet F, Dousset V, Berthoz S, Tourdias T, Sibon I

Background and Purpose- The aim of the present study was to evaluate the relationship between normal-appearing white matter (NAWM) integrity and postischemic stroke recovery in 4 main domains including cognition, mood, gait, and dependency. Methods- A prospective study was conducted, including patients diagnosed for an ischemic supratentorial stroke on a 3T brain MRI performed 24 to 72 hours after symptom onset. Clinical assessment 1 year after stroke included a Montreal Cognitive Assessment, an Isaacs set test, a Zazzo cancelation task, a Hospital Anxiety and Depression scale, a 10-meter walking test, and a modified Rankin Scale (mRS). Diffusion tensor imaging parameters in the NAWM were computed using FMRIB (Functional Magnetic Resonance Imaging of the Brain) Diffusion Toolbox. The relationships between mean NAWM diffusion tensor imaging parameters and the clinical scores were assessed using linear and ordinal regression analyses, including the volumes of white matter hyperintensities, gray matter, and ischemic stroke as radiological covariates. Results- Two hundred seven subjects were included (66+/-13 years old; 67% men; median National Institutes of Health Stroke Scale score, 3; interquartile range, 2-6). In the models including only radiological variables, NAWM fractional anisotropy was associated with the mRS and the cognitive scores. After adjusting for demographic confounders, NAWM fractional anisotropy remained a significant predictor of mRS (beta=-0.24; P=0.04). Additional path analysis showed that NAWM fractional anisotropy had a direct effect on mRS (beta=-0.241; P=0.001) and a less important indirect effect mediating white matter hyperintensity burden. Similar results were found with mean diffusivity, axial diffusivity, and radial diffusivity. In further subgroup analyses, a relationship between NAWM integrity in widespread white matter tracts, mRS, and Isaacs set test was found in right hemispheric strokes. Conclusions- NAWM diffusion tensor imaging parameters measured early after an ischemic stroke are independent predictors of functional outcome and may be additional markers to include in studies evaluating poststroke recovery.

10/2019 | AJNR Am J Neuroradiol   IF 3.3
Multinodular and Vacuolating Posterior Fossa Lesions of Unknown Significance.
Lecler A, Bailleux J, Carsin B, Adle-Biassette H, Baloglu S, Bogey C, Bonneville F, Calvier E, Comby PO, Cottier JP, Cotton F, Deschamps R, Diard-Detoeuf C, Ducray F, Duron L, Drissi C, Elmaleh M, Farras J, Garcia JA, Gerardin E, Grand S, Jianu DC, Kremer S, Magne N, Mejdoubi M, Moulignier A, Ollivier M, Nagi S, Rodallec M, Sadik JC, Shor N, Tourdias T, Vandendries C, Broquet V, Savatovsky J

Multinodular and vacuolating neuronal tumor of the cerebrum is a rare supratentorial brain tumor described for the first time in 2013. Here, we report 11 cases of infratentorial lesions showing similar striking imaging features consisting of a cluster of low T1-weighted imaging and high T2-FLAIR signal intensity nodules, which we referred to as multinodular and vacuolating posterior fossa lesions of unknown significance. No relationship was found between the location of the lesion and clinical symptoms. A T2-FLAIR hypointense central dot sign was present in images of 9/11 (82%) patients. Cortical involvement was present in 2/11 (18%) of patients. Only 1 nodule of 1 multinodular and vacuolating posterior fossa lesion of unknown significance showed enhancement on postcontrast T1WI. DWI, SWI, MRS, and PWI showed no malignant pattern. Lesions did not change in size or signal during a median follow-up of 3 years, suggesting that multinodular and vacuolating posterior fossa lesions of unknown significance are benign malformative lesions that do not require surgical intervention or removal.

10/2019 | j med imaging (bellingham)
Active learning strategy and hybrid training for infarct segmentation on diffusion MRI with a U-shaped network.
Olivier A, Moal O, Moal B, Munsch F, Okubo G, Sibon I, Dousset V, Tourdias T

Automatic and reliable stroke lesion segmentation from diffusion magnetic resonance imaging (MRI) is critical for patient care. Methods using neural networks have been developed, but the rate of false positives limits their use in clinical practice. A training strategy applied to three-dimensional deconvolutional neural networks for stroke lesion segmentation on diffusion MRI was proposed. Infarcts were segmented by experts on diffusion MRI for 929 patients. We divided each database as follows: 60% for a training set, 20% for validation, and 20% for testing. Our hypothesis was a two-phase hybrid learning scheme, in which the network was first trained with whole MRI (regular phase) and then, in a second phase (hybrid phase), alternately with whole MRI and patches. Patches were actively selected from the discrepancy between expert and model segmentation at the beginning of each batch. On the test population, the performances after the regular and hybrid phases were compared. A statistically significant Dice improvement with hybrid training compared with regular training was demonstrated ( p < 0.01 ). The mean Dice reached 0.711 +/- 0.199 . False positives were reduced by almost 30% with hybrid training ( p < 0.01 ). Our hybrid training strategy empowered deep neural networks for more accurate infarct segmentations on diffusion MRI.

25/09/2019 | Sci Rep   IF 4
Multimodal Hippocampal Subfield Grading For Alzheimer's Disease Classification.
Hett K, Ta VT, Catheline G, Tourdias T, Manjon JV, Coupe P

Numerous studies have proposed biomarkers based on magnetic resonance imaging (MRI) to detect and predict the risk of evolution toward Alzheimer's disease (AD). Most of these methods have focused on the hippocampus, which is known to be one of the earliest structures impacted by the disease. To date, patch-based grading approaches provide among the best biomarkers based on the hippocampus. However, this structure is complex and is divided into different subfields, not equally impacted by AD. Former in-vivo imaging studies mainly investigated structural alterations of these subfields using volumetric measurements and microstructural modifications with mean diffusivity measurements. The aim of our work is to improve the current classification performances based on the hippocampus with a new multimodal patch-based framework combining structural and diffusivity MRI. The combination of these two MRI modalities enables the capture of subtle structural and microstructural alterations. Moreover, we propose to study the efficiency of this new framework applied to the hippocampal subfields. To this end, we compare the classification accuracy provided by the different hippocampal subfields using volume, mean diffusivity, and our novel multimodal patch-based grading framework combining structural and diffusion MRI. The experiments conducted in this work show that our new multimodal patch-based method applied to the whole hippocampus provides the most discriminating biomarker for advanced AD detection while our new framework applied into subiculum obtains the best results for AD prediction, improving by two percentage points the accuracy compared to the whole hippocampus.

05/09/2019 | Brain   IF 11.8
Dynamic modular-level alterations of structural-functional coupling in clinically isolated syndrome.
Koubiyr I, Besson P, Deloire M, Charre-Morin J, Saubusse A, Tourdias T, Brochet B, Ruet A

Structural and functional connectivity abnormalities have been reported previously in multiple sclerosis. However, little is known about how each modality evolution relates to the other. Recent studies in other neurological disorders have suggested that structural-functional coupling may be more sensitive in detecting brain alterations than any single modality. Accordingly, this study aimed to investigate the longitudinal evolution of structural-functional coupling, both at the global and modular levels, in the first year following clinically isolated syndrome. We hypothesized that during the course of multiple sclerosis, patients exhibit a decoupling between functional and structural connectivity due to the disruptive nature of the disease. Forty-one consecutive patients with clinically isolated syndrome were prospectively enrolled in this study, along with 19 age-, sex- and educational level-matched healthy control subjects. These participants were followed for 1 year and underwent resting-state functional MRI and diffusion tensor imaging at each time point, along with an extensive neuropsychological assessment. Graph theory analysis revealed structural reorganization at baseline that appeared as an increase in the clustering coefficient in patients compared to controls (P < 0.05), as well as modular-specific alterations. After 1 year of follow-up, both structural and functional reorganization was depicted with abnormal modular-specific connectivity and an increase of the functional betweenness centrality in patients compared to controls (P < 0.01). More importantly, structural-functional decoupling was observed in the salience, visual and somatomotor networks. These alterations were present along with preserved cognitive performance at this stage. These results depict structural damage preceding functional reorganization at a global and modular level during the first year following clinically isolated syndrome along with normal cognitive performance, suggesting a compensation mechanism at this stage of the disease. Principally, structural-functional decoupling observed for the first time in multiple sclerosis suggests that functional reorganization occurs along indirect anatomical pathways.

23/08/2019 | nucl med commun   IF 1.5
Combining 3'-Deoxy-3'-[18F] fluorothymidine and MRI increases the sensitivity of glioma volume detection.
Fernandez P, Zanotti-Fregonara P, Eimer S, Gimbert E, Monteil P, Penchet G, Lamare F, Perez P, Vimont D, Ledure S, Tourdias T, Loiseau H

OBJECTIVE: 3'-Deoxy-3'-[18F] fluorothymidine (18F-FLT) is a marker of cell proliferation and displays a high tumor-to-background ratio in brain tumor lesions. We determined whether combining 18F-FLT PET and MRI study improves the detection of tumoral tissue compared to MRI alone and whether 18F-FLT uptake has a prognostic value by studying its association with histopathological features. METHODS: Thirteen patients with a supratentorial malignant glioma were recruited and scheduled for surgery. The tumor volume was defined in all patients on both 18F-FLT PET and MRI images. The images were coregistered and uploaded onto a neuronavigation system. During surgery, an average of 11 biopsies per patient were taken in regions of the brain that were positive to one or both imaging modalities, as well as from control peritumoral regions. The standardized uptake values (SUVs) of each biopsy region were correlated to histopathological data (i.e., proliferation index and number of mitoses) and the SUV values of high and low-grade samples were compared. RESULTS: Out of a total of 149 biopsies, 109 contained tumoral tissue at histopathological analysis. The positive predictive value was 93.1% for MRI alone and 78.3% for MRI and PET combined. In addition, 40% of the biopsy samples taken from areas of the brain that were negative at both PET and MRI had evidence of malignancy at pathology. The SUV values were not significantly correlated to either the proliferation index or the number of mitoses, and could not differentiate between high- and low-grade samples. CONCLUSION: In patients with newly diagnosed glioma, a combination of MRI and 18F-FLT-PET detects additional tumoral tissue and this may lead to a more complete surgical resection. Also, the addition of a negative PET to a negative MRI increases the negative predictive value. However, 18F-FLT still underestimated the margins of the lesion and did not correlate with histopathological features.

25/06/2019 | Cell Rep   IF 7.8
Aquaporin-4 Surface Trafficking Regulates Astrocytic Process Motility and Synaptic Activity in Health and Autoimmune Disease.
Ciappelloni S, Bouchet D, Dubourdieu N, Boue-Grabot E, Kellermayer B, Manso C, Marignier R, Oliet SHR, Tourdias T, Groc L

Astrocytes constantly adapt their ramified morphology in order to support brain cell assemblies. Such plasticity is partly mediated by ion and water fluxes, which rely on the water channel aquaporin-4 (AQP4). The mechanism by which this channel locally contributes to process dynamics has remained elusive. Using a combination of single-molecule and calcium imaging approaches, we here investigated in hippocampal astrocytes the dynamic distribution of the AQP4 isoforms M1 and M23. Surface AQP4-M1 formed small aggregates that contrast with the large AQP4-M23 clusters that are enriched near glutamatergic synapses. Strikingly, stabilizing surface AQP4-M23 tuned the motility of astrocyte processes and favors glutamate synapse activity. Furthermore, human autoantibodies directed against AQP4 from neuromyelitis optica (NMO) patients impaired AQP4-M23 dynamic distribution and, consequently, astrocyte process and synaptic activity. Collectively, it emerges that the membrane dynamics of AQP4 isoform regulate brain cell assemblies in health and autoimmune brain disease targeting AQP4.

19/06/2019 | j Neuroradiol   IF 3.3
Mri Features Of Demyelinating Disease Associated With Anti-Mog Antibodies In Adults.
Deneve M, Biotti D, Patsoura S, Ferrier M, Meluchova Z, Mahieu L, Heran F, Vignal C, Deschamps R, Gout O, Menjot de Champfleur N, Ayrignac X, Dalliere CC, Labauge P, Dulau C, Tourdias T, Dumas H, Cognard C, Brassat D, Bonneville F

The spectrum of Myelin Oligodendrocytes Glycoprotein (MOG) antibody disease constitutes a recently described challenging entity, referring to a relatively new spectrum of autoimmune disorders with antibodies against MOG predominantly involving the optic nerve and spinal cord. The purpose of this article is to describe MRI features of MOG-AD involvement in the optic nerves, spinal cord and the brain of adults.

06/2019 | Stroke   IF 6
Chronic Cortical Cerebral Microinfarcts Slow Down Cognitive Recovery After Acute Ischemic Stroke.
Sagnier S, Okubo G, Catheline G, Munsch F, Bigourdan A, Debruxelles S, Poli M, Olindo S, Renou P, Rouanet F, Dousset V, Tourdias T, Sibon I

Background and Purpose- Cortical cerebral microinfarcts (CMIs) have been associated with vascular dementia and Alzheimer disease. The aim of the present study was to evaluate the role of cortical CMI detected on 3T magnetic resonance imaging, on the evolution of cognition during the year following an acute ischemic stroke. Methods- We conducted a prospective and monocentric study, including patients diagnosed for a supratentorial ischemic stroke with a National Institutes of Health Stroke Scale score >/=1, without prestroke dementia or neurological disability. Cortical CMIs were assessed on a brain 3T magnetic resonance imaging realized at baseline, as well as markers of small vessel disease, stroke characteristics, and hippocampal atrophy. Cognitive assessment was performed at 3 time points (baseline, 3 months, and 1 year) using the Montreal Cognitive Assessment, the Isaacs set test, and the Zazzo's cancellation task. Generalized linear mixed models were performed to evaluate the relationships between the number of cortical CMI and changes in cognitive scores over 1 year. Results- Among 199 patients (65+/-13 years old, 68% men), 88 (44%) had at least one cortical CMI. Hypertension was the main predictor of a higher cortical CMI load (B=0.58, P=0.005). The number of cortical CMI was associated with an increase time at the Zazzo's cancellation task over 1 year (B=3.84, P=0.01), regardless of the other magnetic resonance imaging markers, stroke severity, and demographic factors. Conclusions- Cortical CMIs are additional magnetic resonance imaging markers of poorer processing speed after ischemic stroke. These results indicate that a high load of cortical CMI in patients with stroke can be considered as a cerebral frailty condition which counteracts to the recovery process, suggesting a reduced brain plasticity among these patients.

05/2019 | Radiology   IF 7.6
Neurodegeneration of the Substantia Nigra after Ipsilateral Infarct: MRI R2* Mapping and Relationship to Clinical Outcome.
Linck PA, Kuchcinski G, Munsch F, Griffier R, Lopes R, Okubo G, Sagnier S, Renou P, Asselineau J, Perez P, Dousset V, Sibon I, Tourdias T

Background The substantia nigra (SN) is suspected to be affected after remote infarction, in view of its large array of connections with the supratentorial brain. Whether secondary involvement of SN worsens overall clinical outcome after a supratentorial stroke has not previously been studied. Purpose To assess longitudinal changes in SN R2* by using MRI in the setting of ipsilesional supratentorial infarct and the relationship of SN signal change to clinical outcome. Materials and Methods Participants prospectively included from 2012 to 2015 were evaluated at 24-72 hours (baseline visit) and at 1 year with MRI to quantify R2*. The SN was segmented bilaterally to calculate an R2* asymmetry index (SN-AI); greater SN-AI indicated greater relative R2* in the ipsilateral compared with contralateral SN. The 95th percentile of R2* (hereafter, SN-AI95) was compared according to infarct location with mixed linear regression models. We also conducted voxel-based comparisons of R2* and identified individual infarcted voxels associated with high SN-AI95 through voxel-based lesion-symptom mapping. Multivariable regression models tested the association between SN-AI95 and clinical scores. Results A total of 181 participants were evaluated (127 men, 54 women; mean age +/- standard deviation, 64.2 years +/- 13.1; 75 striatum infarcts, 106 other locations). Visual inspection, SN-AI95, and average maps consistently showed higher SN R2* at 1 year if ipsilateral striatum was infarcted than if it was not (SN-AI95, 4.25 vs -0.88; P < .001), but this was not observed at baseline. The striatal location of the infarct was associated with higher SN-AI95 at 1 year independently from infarct volume, SN-AI95 at baseline, microbleeds, age, and sex (beta = 4.99; P < .001). Voxel-based lesion-symptom mapping confirmed that striatum but also insula, internal capsule, and external capsule were associated with higher SN-AI95 at 1 year. SN-AI95 was an independent contributor of poor motor outcome (Box and Block Test, beta = -.62 points; P = .01). Conclusion In patients with stroke, greater substantia nigra R2*, likely reflective of greater iron content, can be observed at 1 year ipsilateral from remote infarcts of specific location, which is associated with worse motor function. (c) RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Vernooij in this issue.