Page personnelle



Tél : 33(0)5 57 57 56 10
Envoyer un email

15 publication(s) depuis Août 1998:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

08/2013 | Glia   IF 6
Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus.
Ulmann L, Levavasseur F, Avignone E, Peyroutou R, Hirbec H, Audinat E, Rassendren F

Within the central nervous system, functions of the ATP-gated receptor-channel P2X4 (P2X4R) are still poorly understood, yet P2X4R activation in neurons and microglia coincides with high or pathological neuronal activities. In this study, we investigated the potential involvement of P2X4R in microglial functions in a model of kainate (KA)-induced status epilepticus (SE). We found that SE was associated with an induction of P2X4R expression in the hippocampus, mostly localized in activated microglial cells. In P2X4R-deficient mice, behavioral responses during KA-induced SE were unaltered. However, 48h post SE specific features of microglial activation, such as cell recruitment and upregulation of voltage-dependent potassium channels were impaired in P2X4R-deficient mice, whereas the expression and function of other microglial purinergic receptors remained unaffected. Consistent with the role of P2X4R in activity-dependent degenerative processes, the CA1 area was partially protected from SE-induced neuronal death in P2X4R-deficient mice compared with wild-type animals. Our findings demonstrate that P2X4Rs are brought into play during neuronal hyperexcitability and that they control specific aspects of microglial activation. Our results also suggest that P2X4Rs contribute to excitotoxic damages by regulating microglial activation.

19/02/2013 | Biophys J   IF 3.9
Two-photon excitation STED microscopy in two colors in acute brain slices.
Bethge P, Chereau R, Avignone E, Marsicano G, Nagerl UV

Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ~350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.

2009 | PLoS ONE   IF 2.7
Predominant functional expression of Kv1.3 by activated microglia of the hippocampus after Status epilepticus
Menteyne A, Levavasseur F, Audinat E, Avignone E

BACKGROUND: Growing evidence indicates that the functional state of microglial cells differs according to the pathological conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators. We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model. METHODOLOGY/PRINCIPAL FINDINGS: SE was induced by systemic injection of kainate in CX3CR1(eGFP/+) mice and whole cell recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed Kdr currents which were characterized by a potential of half-maximal activation near -25 mV, prominent steady-state and cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30% of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents, indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents. Finally, agitoxin-2 and margatoxin strongly inhibited the current. CONCLUSIONS/SIGNIFICANCE: These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in activated microglia after SE.

10/09/2008 | J Neurosci   IF 5.7
Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling
Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E

Microglia cells are the resident macrophages of the CNS, and their activation plays a critical role in inflammatory reactions associated with many brain disorders, including ischemia, Alzheimer's and Parkinson's diseases, and epilepsy. However, the changes of microglia functional properties in epilepsy have rarely been studied. Here, we used a model of status epilepticus (SE) induced by intraperitoneal kainate injections to characterize the properties of microglial cells in hippocampal slices from CX3CR1(eGFP/+) mice. SE induced within 3 h an increased expression of inflammatory mediators in the hippocampus, followed by a modification of microglia morphology, a microglia proliferation, and a significant neurodegeneration in CA1. Changes in electrophysiological intrinsic membrane properties of hippocampal microglia were detected at 24-48 h after SE with, in particular, the appearance of new voltage-activated potassium currents. Consistent with the observation of an upregulation of purinergic receptor mRNAs in the hippocampus, we also provide pharmacological evidence that microglia membrane currents mediated by the activation of P2 receptors, including P2X(7), P2Y(6), and P2Y(12), were increased 48 h after SE. As a functional consequence of this modification of purinergic signaling, motility of microglia processes toward a source of P2Y(12) receptor agonist was twice as fast in the epileptic hippocampus. This study is the first functional description of microglia activation in an in vivo model of inflammation and provides evidence for the existence of a particular microglial activation state after a status epilepticus.

Hippocampal interneurons are generally more resistant than pyramidal cells to excitotoxic insults. Because NMDA receptors play a crucial role in neurodegeneration, we have compared the response to exogenous NMDA in CA1 pyramidal cells and interneurons of the stratum oriens using combined whole-cell patch-clamp recording and ratiometric Ca2+ imaging. In voltage-clamp, current-clamp or in nominally Mg2+-free medium, NMDA (10 microM; 3-5 min exposure in the presence of tetrodotoxin) induced a markedly larger inward current and Ca2+ rise in pyramidal cells than in interneurons. Pyramidal cells also showed a more pronounced voltage dependence in their response to NMDA. We hypothesized that this enhanced response to NMDA receptor activation in pyramidal cells could underlie their increased vulnerability to excitotoxicity. Using loss of dye as an indicator of degenerative membrane disruption, interneurons tolerated continuous exposure to a high concentration of NMDA (30 microM) for longer periods than pyramidal cells. This acute neurodegeneration in pyramidal cells was independent of intracellular Ca2+, because high intracellular BAPTA (20 mM) did not prolong survival time. Thus, a plausible explanation for the enhanced sensitivity of pyramidal neurons to excitotoxic insults associated with cerebral ischemia is their greater response to NMDA receptor activation, which may reflect differences in NMDA receptor expression and/or subunit composition.

15/12/2003 | J Physiol   IF 4.5
Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions
Rouach N, Segal M, Koulakoff A, Giaume C, Avignone E

Spontaneous activity in the central nervous system is strongly suppressed by blockers of gap junctions (GJs), suggesting that GJs contribute to network activity. However, the lack of selective GJ blockers prohibits the determination of their site of action, i.e. neuronal versus glial. Astrocytes are strongly coupled through GJs and have recently been shown to modulate synaptic transmission, yet their role in neuronal network activity was not analysed. The present study investigated the effects and site of action of the GJ blocker, carbenoxolone (CBX), on neuronal network activity. To this end, we used cultures of hippocampal or cortical neurons, plated on astrocytes. In these cultures neurons display spontaneous synchronous activity and GJs are found only in astrocytes. CBX induced in these neurons a reversible suppression of spontaneous action potential discharges, synaptic currents and synchronised calcium oscillations. Moreover, CBX inhibited oscillatory activity induced by the GABAA antagonist, bicuculline. These effects were not due to blockade of astrocytic GJs, since they were not mimicked nor occluded by endothelin-1 (ET-1), a peptide known to block astrocytic GJs. Also, these effects were still present in co-cultures of wild-type neurons plated on astrocytes originating from connexin-43 (Cx43) knockout mice, and in neuronal cultures which contain few isolated astrocytes. CBX was not likely to exert its effect through neuronal GJs either, as immunostaining for major neuronal connexins (Cx) as well as dye or electrical coupling, were not detected in the different models of cultured neurons examined. Finally while CBX (at 100 microM) did not modify presynaptic transmitter release and postsynaptic responses to glutamate, it did cause an increase in the action potential threshold and strongly decreased the firing rate in response to a sustained depolarising current. These data demonstrate that CBX does not exert its action on network activity of cultured neurons through astrocytic GJs and suggest that it has direct effects on neurons, not involving GJs.

11/2002 | Biol Cell   IF 3.9
Gap junctions and connexin expression in the normal and pathological central nervous system
Rouach N, Avignone E, Meme W, Koulakoff A, Venance L, Blomstrand F, Giaume C

Gap junctions are widely expressed in the various cell types of the central nervous system. These specialized membrane intercellular junctions provide the morphological support for direct electrical and biochemical communication between adjacent cells. This intercellular coupling is controlled by neurotransmitters and other endogenous compounds produced and released in basal as well as in pathological situations. Changes in the expression and the function of connexins are associated with number of brain pathologies and lesions suggesting that they could contribute to the expansion of brain damages. The purpose of this review is to summarize data presently available concerning gap junctions and the expression and function of connexins in different cell types of the central nervous system and to present their physiopathological relevance in three major brain dysfunctions: inflammation, epilepsy and ischemia.

Despite widespread interest in dendritic spines, little is known about the mechanisms responsible for spine formation, retraction, or stabilization. We have now found that a brief exposure of cultured hippocampal neurons to a conditioning medium that favors activation of the NMDA receptor produces long-term modification of their spontaneous network activity. The conditioning protocol enhances correlated activity of neurons in the culture, in a process requiring an increase in [Ca(2+)](i) and is associated with both formation of novel dendritic spines and pruning of others. The novel spines are likely to be touched by a presynaptic terminal, labeled with FM4-64 dye, whereas the absence of such terminals increases the likelihood of spine pruning. These results indicate that long-term functional changes are correlated with morphological modifications of dendritic spines of neurons in a network.

Cu/Zn superoxide dismutase (SOD-1) is a key enzyme in oxygen metabolism in the brain. Overexpression of SOD-1 in transgenic (Tg) mice has been used to study the functional roles of this enzyme in oxidative stress, lipid peroxidation, and neurotoxicity. We found that Tg-SOD-1 mice are strikingly less sensitive to kainic acid-induced behavioral seizures than control mice. Furthermore, the hippocampus of Tg-SOD-1 mice was far less sensitive to local application of bicuculline, a GABA-A antagonist, than the hippocampus of control mice. GABAergic functions, expressed in extracellular paired-pulse depression, and in IPSCs recorded in dentate granular cells were enhanced in Tg-SOD-1 mice. Finally, long-term potentiation (LTP), not found in the dentate gyrus of Tg-SOD-1 mice, could be restored by local blockade of inhibition and could be blocked in control mice by injection of diazepam, which amplifies inhibition. These results indicate that constitutive elevation of SOD-1 activity exerts a major effect on neuronal excitability in the hippocampus, which, in turn, controls hippocampal ability to express LTP.

1. The whole-cell patch clamp technique was used to study the role of muscarinic receptors in regulating the frequency of giant depolarizing potentials (GDPs) in CA3 hippocampal neurones in slices from postnatal (P) P1-P8 rats. 2. Atropine (1 microM) reduced the frequency of GDPs by 64.2 +/- 2.9 %. The acetylcholinesterase inhibitor edrophonium (20 microM) increased the frequency of GDPs in a developmentally regulated way. This effect was antagonized by the M1 muscarinic receptor antagonist pirenzepine. 3. In the presence of edrophonium, tetanic stimulation of cholinergic fibres induced either an enhancement of GDP frequency (179 +/- 79 %) or a membrane depolarization (27 +/- 16 mV) associated with an increase in synaptic noise. These effects were prevented by atropine. 4. Application of carbachol (3 microM) produced an increase in GDP frequency that at P5-P6 was associated with a membrane depolarization and an increase in synaptic noise. These effects were prevented by atropine, pirenzepine (3 microM) and bicuculline (10 microM). 5. In the presence of pirenzepine, carbachol reduced GDP frequency by 50 +/- 4 %. Conversely, in the presence of methoctramine (3 microM), carbachol enhanced GDP frequency by 117 +/- 4 %. 6. It is concluded that endogenous acetylcholine, through the activation of M1 receptors, enhances the release of gamma-aminobutyric acid (GABA), in a developmentally regulated way. On the other hand, carbachol exerts both an up- and downregulation of GABA release through the activation of M1 and M2 receptors, respectively.