Stéphane OLIET




Chercheur

Tél : 33(0)5 57 57 37 37
Envoyer un email



Cursus:
PhD, McGill University (1994)
Posdoc, UCSF (1994-1997) HFSP fellow
CR1 CNRS, Inserm U378(2001)
HDR, Université Bordeaux 2 (2003)
DR1 CNRS, Neurocentre Magendie Inserm (2009)

Expertise: Astrocyte, gliotransmitters, plasticity, synapse, NMDA receptors





99 publication(s) depuis Juillet 1991:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


13/07/2015 | Neurosci Lett   IF 2
Neuropathic pain depends upon d-serine co-activation of spinal NMDA receptors in rats.
Lefevre Y, Amadio A, Vincent P, Descheemaeker A, Oliet SH, Dallel R, Voisin DL

Abstract:
Activation of N-methyl-d-aspartate (NMDA) receptors is critical for hypersensitivity in chronic neuropathic pain. Since astroglia can regulate NMDA receptor activation by releasing the NMDA receptor co-agonist d-serine, we investigated the role of NMDA receptor and d-serine in neuropathic chronic pain. Male Wistar rats underwent right L5-L6 spinal nerve ligation or sham surgery and were tested for mechanical allodynia and hyperalgesia after 14 days. Acute intrathecal administration of the NMDA receptor antagonist AP-5 as well as chronic administration of the glia metabolism inhibitor fluoroacetate significantly reduced mechanical allodynia in neuropathic rats. The effect of fluoroacetate was reversed by acutely administered intrathecal d-serine. Degrading d-serine using acute intrathecal administration of d-aminoacid oxidase also reduced pain symptoms. Immunocytochemistry showed that about 70% of serine racemase, the synthesizing enzyme of d-serine, was expressed in astrocyte processes in the superficial laminae of L5 dorsal horn. Serine racemase expression was upregulated in astrocyte processes in neuropathic rats compared to sham rats. These results show that neuropathic pain depends upon glial d-serine that co-activates spinal NMDA receptors.




02/2015 | Nat Neurosci   IF 16.1
Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission.
Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B, Baufreton J, Groc L, Oliet SH

Abstract:
Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission.




05/12/2014 | j proteome res   IF 5
Proteomic analysis of gliosomes from mouse brain: identification and investigation of glial membrane proteins.
Carney KE, Milanese M, van Nierop P, Li KW, Oliet SH, Smit AB, Bonanno G, Verheijen MH

Abstract:
Astrocytes are being increasingly recognized as crucial contributors to neuronal function at synapses, axons, and somas. Reliable methods that can provide insight into astrocyte proteins at the neuron-astrocyte functional interface are highly desirable. Here, we conducted a mass spectrometry analysis of Percoll gradient-isolated gliosomes, a viable preparation of glial subcellular particles often used to study mechanisms of astrocytic transmitter uptake and release and their regulation. Gliosomes were compared with synaptosomes, a preparation containing the neurotransmitter release machinery, and, accordingly, synaptosomes were enriched for proteins involved in synaptic vesicle-mediated transport. Interestingly, gliosome preparations were found to be enriched for different classes of known astrocyte proteins, such as VAMP3 (involved in astrocyte exocytosis), Ezrin (perisynaptic astrocyte cytoskeletal protein), and Basigin (astrocyte membrane glycoprotein), as well as for G-protein-mediated signaling proteins. Mass spectrometry data are available via ProteomeXchange with the identifier PXD001375. Together, these data provide the first detailed description of the gliosome proteome and show that gliosomes can be a useful preparation to study glial membrane proteins and associated processes.




19/10/2014 | Philos Trans R Soc Lond B Biol Sci
Organization, control and function of extrasynaptic NMDA receptors.
Papouin T, Oliet SH

Abstract:
N-methyl D-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors.




28/03/2014 | Neuroscience   IF 3.3
Cannabinoid type-1 receptors in the paraventricular nucleus of the hypothalamus inhibit stimulated food intake.
Soria-Gomez E, Massa F, Bellocchio L, Rueda-Orozco PE, Ciofi P, Cota D, Oliet SH, Prospero-Garcia O, Marsicano G

Abstract:
Cannabinoid receptor type 1 (CB1)-dependent signaling in the brain is known to modulate food intake. Recent evidence has actually shown that CB1 can both inhibit and stimulate food intake in fasting/refeeding conditions, depending on the specific neuronal circuits involved. However, the exact brain sites where this bimodal control is exerted and the underlying neurobiological mechanisms are not fully understood yet. Using pharmacological and electrophysiological approaches, we show that local CB1 blockade in the paraventricular nucleus of the hypothalamus (PVN) increases fasting-induced hyperphagia in rats. Furthermore, local CB1 blockade in the PVN also increases the orexigenic effect of the gut hormone ghrelin in animals fed ad libitum. At the electrophysiological level, CB1 blockade in slices containing the PVN potentiates the decrease of the activity of PVN neurons induced by long-term application of ghrelin. Hence, the PVN is (one of) the site(s) where signals associated with the body's energy status determine the direction of the effects of endocannabinoid signaling on food intake.




19/02/2014 | Neuron   IF 16
Gliotransmitters travel in time and space.
Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A

Abstract:
The identification of the presence of active signaling between astrocytes and neurons in a process termed gliotransmission has caused a paradigm shift in our thinking about brain function. However, we are still in the early days of the conceptualization of how astrocytes influence synapses, neurons, networks, and ultimately behavior. In this Perspective, our goal is to identify emerging principles governing gliotransmission and consider the specific properties of this process that endow the astrocyte with unique functions in brain signal integration. We develop and present hypotheses aimed at reconciling confounding reports and define open questions to provide a conceptual framework for future studies. We propose that astrocytes mainly signal through high-affinity slowly desensitizing receptors to modulate neurons and perform integration in spatiotemporal domains complementary to those of neurons.




11/02/2014 | Nat Commun   IF 10.7
Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction.
Israel JM, Cabelguen JM, Le Masson G, Oliet SH, Ciofi P

Abstract:
The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-alpha. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.




2014 | Front Aging Neurosci   IF 2.8
Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology?
Charron G, Doudnikoff E, Canron MH, Li Q, Vega C, Marais S, Baufreton J, Vital A, Oliet SH, Bezard E

Abstract:
The current concept of basal ganglia organization and function in physiological and pathophysiological conditions excludes the most numerous cells in the brain, i.e., the astrocytes, present with a ratio of 10:1 neuron. Their role in neurodegenerative condition such as Parkinson's disease (PD) remains to be elucidated. Before embarking into physiological investigations of the yet-to-be-identified 'tripartite' synapses in the basal ganglia in general and the striatum in particular, we therefore characterized anatomically the PD-related modifications in astrocytic morphology, the changes in astrocytic network connections and the consequences on the spatial relationship between astrocytic processes and asymmetric synapses in normal and PD-like conditions in experimental and human PD. Our results unravel a dramatic regulation of striatal astrocytosis supporting the hypothesis of a key role in (dys) regulating corticostriatal transmission. Astrocytes and their various properties might thus represent a therapeutic target in PD.




2014 | Pain   IF 5.8
Cancer pain is not necessarily correlated with spinal overexpression of reactive
glia markers

Ducourneau V*, Dolique T*, Hachem-Delaunay S, Miraucourt L, Amadio A, Blaszczyk L, Jacquot F, Ly J, Devoize L, Oliet SH, Dallel R, Mothet JP, Nagy F, Fenelon V*, Voisin D*

Abstract:
Bone cancer pain is a common and disruptive symptom in cancer patients. In cancer pain animal models, massive reactive astrogliosis in the dorsal horn of the spinal cord has been reported. Because astrocytes may behave as driving partners for pathological pain, we investigated the temporal development of pain behavior and reactive astrogliosis in a rat bone cancer pain model induced by injecting MRMT-1 rat mammary gland carcinoma cells into the tibia. Along with the development of bone lesions, a gradual mechanical and thermal allodynia and hyperalgesia as well as a reduced use of the affected limb developed in bone cancer-bearing animals, but not in sham-treated animals. Dorsal horn Fos expression after nonpainful palpation of the injected limb was also increased in bone cancer-bearing animals. However, at any time during the evolution of tumor, there was no increase in glial fibrillary acidic protein (GFAP) immunoreactivity in the dorsal horn. Further analysis at 21days after injection of the tumor showed no increase in GFAP and interleukin (IL) 1beta transcripts, number of superficial dorsal horn S100beta protein immunoreactive astrocytes, or immunoreactivity for microglial markers (OX-42 and Iba-1). In contrast, all these parameters were increased in the dorsal horn of rats 2weeks after sciatic nerve ligation. This suggests that in some cases, bone cancer pain may not be correlated with spinal overexpression of reactive glia markers, whereas neuropathic pain is. Glia may thus play different roles in the development and maintenance of chronic pain in these 2 situations.




2014 | J Physiol   IF 4.5
Extracellular signal-regulated kinase phosphorylation in forebrain neurones
contributes to osmoregulatory mechanisms

Dine J, Ducourneau V, Fenelon V, Fossat P, Amadio A, Eder M, Israel JM, Oliet SH, Voisin D

Abstract: