Page personnelle



Tél :
Envoyer un email

25 publication(s) depuis Septembre 2009:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

06/2013 | Neuropsychopharmacology   IF 7.2
Dissociation of the pharmacological effects of THC by mTOR blockade.
Puighermanal E, Busquets-Garcia A, Gomis-Gonzalez M, Marsicano G, Maldonado R, Ozaita A

The potential therapeutic benefits of cannabinoid compounds have raised interest in understanding the molecular mechanisms that underlie cannabinoid-mediated effects. We previously showed that the acute amnesic-like effects of delta9-tetrahydrocannabinol (THC) were prevented by the subchronic inhibition of the mammalian target of rapamycin (mTOR) pathway. In the present study, we assess the relevance of the mTOR pathway in other acute and chronic pharmacological effects of THC. The rapamycin derivative temsirolimus, an inhibitor of the mTOR pathway approved by the Food and Drug Administration, prevents both the anxiogenic- and the amnesic-like effects produced by acute THC. In contrast, THC-induced anxiolysis, hypothermia, hypolocomotion, and antinociception are not sensitive to the mTOR inhibition. In addition, a clear tolerance to THC-induced anxiolysis, hypothermia, hypolocomotion, and antinociception was observed after chronic treatment, but not to its anxiogenic- and amnesic-like effects. Temsirolimus pre-treatment prevented the amnesic-like effects of chronic THC without affecting the downregulation of CB1 receptors (CB1R) induced by this chronic treatment. Instead, temsirolimus blockade after chronic THC cessation did not prevent the residual cognitive deficit produced by chronic THC. Using conditional knockout mice lacking CB1R in GABAergic or glutamatergic neurons, we found that GABAergic CB1Rs are mainly downregulated under chronic THC treatment conditions, and CB1-GABA-KO mice did not develop cognitive deficits after chronic THC exposure. Therefore, mTOR inhibition by temsirolimus allows the segregation of the potentially beneficial effects of cannabinoid agonists, such as the anxiolytic and antinociceptive effects, from the negative effects, such as anxiogenic- and amnesic-like responses. Altogether, these results provide new insights for targeting the endocannabinoid system in order to prevent possible side effects.

05/2013 | Nat Med   IF 30.6
Targeting the endocannabinoid system in the treatment of fragile X syndrome.
Busquets-Garcia A, Gomis-Gonzalez M, Guegan T, Agustin-Pavon C, Pastor A, Mato S, Perez-Samartin A, Matute C, de la Torre R, Dierssen M, Maldonado R, Ozaita A

Fragile X syndrome (FXS), the most common monogenic cause of inherited intellectual disability and autism, is caused by the silencing of the FMR1 gene, leading to the loss of fragile X mental retardation protein (FMRP), a synaptically expressed RNA-binding protein regulating translation. The Fmr1 knockout model recapitulates the main traits of the disease. Uncontrolled activity of metabotropic glutamate receptor 5 (mGluR5) and mammalian target of rapamycin (mTOR) signaling seem crucial in the pathology of this disease. The endocannabinoid system (ECS) is a key modulator of synaptic plasticity, cognitive performance, anxiety, nociception and seizure susceptibility, all of which are affected in FXS. The cannabinoid receptors CB1 (CB1R) and CB2 (CB2R) are activated by phospholipid-derived endocannabinoids, and CB1R-driven long-term regulation of synaptic strength, as a consequence of mGluR5 activation, is altered in several brain areas of Fmr1 knockout mice. We found that CB1R blockade in male Fmr1 knockout (Fmr1(-/y)) mice through pharmacological and genetic approaches normalized cognitive impairment, nociceptive desensitization, susceptibility to audiogenic seizures, overactivated mTOR signaling and altered spine morphology, whereas pharmacological blockade of CB2R normalized anxiolytic-like behavior. Some of these traits were also reversed by pharmacological inhibition of mTOR or mGluR5. Thus, blockade of ECS is a potential therapeutic approach to normalize specific alterations in FXS.

05/12/2012 | Philos Trans R Soc Lond B Biol Sci   IF 6.1
Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids.
Puighermanal E, Busquets-Garcia A, Maldonado R, Ozaita A

Exogenous cannabinoids, such as delta9-tetrahydrocannabinol (THC), as well as the modulation of endogenous cannabinoids, affect cognitive function through the activation of cannabinoid receptors. Indeed, these compounds modulate a number of signalling pathways critically implicated in the deleterious effect of cannabinoids on learning and memory. Thus, the involvement of the mammalian target of rapamycin pathway and extracellular signal-regulated kinases, together with their consequent regulation of cellular processes such as protein translation, play a critical role in the amnesic-like effects of cannabinoids. In this study, we summarize the cellular and molecular mechanisms reported in the modulation of cognitive function by the endocannabinoid system.

01/09/2011 | Biol Psychiatry   IF 11.5
Differential role of anandamide and 2-arachidonoylglycerol in memory and anxiety-like responses.
Busquets-Garcia A, Puighermanal E, Pastor A, de la Torre R, Maldonado R, Ozaita A

BACKGROUND: Cannabinoid agonists are potential therapeutic agents because of their antinociceptive and anxiolytic-like effects, although an important caveat to their use is the possible adverse responses related to memory impairment. An alternative approach to circumvent this limitation consists of enhancing the concentration of the endocannabinoids anandamide and 2-arachidonoylglycerol. METHODS: Using low doses of the specific inhibitors of the endocannabinoid metabolizing enzymes fatty acid amide hydrolase, URB597, and monoacylglycerol lipase, JZL184, we analyzed their acute and chronic effects on memory consolidation, anxiolytic-like effects, and nociception in mice (n = 6-12 per experimental group). RESULTS: We show that anandamide is a central component in the modulation of memory consolidation, whereas 2-arachidonoylglycerol is not involved in this process. Interestingly, both URB597 and JZL184 induce anxiolytic-like effects through different cannabinoid receptors. In addition, the results show that the antinociceptive and anxiolytic-like responses of both inhibitors, as well as their acute effects on memory consolidation, are maintained after chronic treatment. CONCLUSIONS: These results dissociate the role of anandamide and 2-arachidonoylglycerol in memory consolidation and anxiety and reveal the interest of cannabinoid receptor 2 as a novel target for the treatment of anxiety-related disorders.

09/2009 | Nat Neurosci   IF 21.1
Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling.
Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A

Cognitive impairment is one of the most important negative consequences associated with cannabis consumption. We found that CB1 cannabinoid receptor (CB1R) activation transiently modulated the mammalian target of rapamycin (mTOR)/p70S6K pathway and the protein synthesis machinery in the mouse hippocampus, which correlated with the amnesic properties of delta9-tetrahydrocannabinol (THC). In addition, non-amnesic doses of either the mTOR blocker rapamycin or the protein synthesis inhibitor anisomycin abrogated the amnesic-like effects of THC, pointing to a mechanism involving new protein synthesis. Moreover, using pharmacological and genetic tools, we found that THC long-term memory deficits were mediated by CB1Rs expressed on GABAergic interneurons through a glutamatergic mechanism, as both the amnesic-like effects and p70S6K phosphorylation were reduced in GABA-CB1R knockout mice and by NMDA blockade.