Neurocentre Magendie

Edgar SORIA




Chercheur Invite

Tél : 557573754
Envoyer un email


Cursus:
PhD: UNAM, Mexique (2009)
Post-Doc: INSERM, Magendie (2009-)






24 publication(s) depuis Août 2007:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


20/06/2017 | bio protoc
Representation-mediated Aversion as a Model to Study Psychotic-like States in Mice.
Busquets-Garcia A, Soria-Gomez E, Ferreira G, Marsicano G

Abstract:
Several paradigms for rodent models of the cognitive and negative endophenotypes found in schizophrenic patients have been proposed. However, significant efforts are needed in order to study the pathophysiology of schizophrenia-related positive symptoms. Recently, it has been shown that these positive symptoms can be studied in rats by using representation-mediated learning. This learning measure the accuracy of mental representations of reality, also called 'reality testing'. Alterations in 'reality testing' performance can be an indication of an impairment in perception which is a clear hallmark of positive psychotic-like states. Thus, we describe here a mouse task adapted from previous findings based on a sensory preconditioning task. With this task, associations made between different neutral stimuli (e.g., an odor and a taste) and subsequent selective devaluation of one of these stimuli have allowed us to study mental sensory representations. Thus, the interest of this task is that it can be used to model positive psychotic-like states in mice, as recently described.




21/02/2017 | Mol Psychiatry   IF 13.2
Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice.
Busquets-Garcia A, Soria-Gomez E, Redon B, Mackenbach Y, Vallee M, Chaouloff F, Varilh M, Ferreira G, Piazza PV, Marsicano G

Abstract:
Cannabis-induced acute psychotic-like states (CIAPS) represent a growing health issue, but their underlying neurobiological mechanisms are poorly understood. The use of antipsychotics and benzodiazepines against CIAPS is limited by side effects and/or by their ability to tackle only certain aspects of psychosis. Thus, safer wide-spectrum treatments are currently needed. Although the blockade of cannabinoid type-1 receptor (CB1) had been suggested as a therapeutical means against CIAPS, the use of orthosteric CB1 receptor full antagonists is strongly limited by undesired side effects and low efficacy. The neurosteroid pregnenolone has been recently shown to act as a potent endogenous allosteric signal-specific inhibitor of CB1 receptors. Thus, we tested in mice the potential therapeutic use of pregnenolone against acute psychotic-like effects of Delta9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. We found that pregnenolone blocks a wide spectrum of THC-induced endophenotypes typically associated with psychotic-like states, including impairments in cognitive functions, somatosensory gating and social interaction. In order to capture THC-induced positive psychotic-like symptoms (e.g. perceptual delusions), we adapted a behavioral paradigm based on associations between different sensory modalities and selective devaluation, allowing the measurement of mental sensory representations in mice. Acting at hippocampal CB1 receptors, THC impaired the correct processing of mental sensory representations (reality testing) in an antipsychotic- and pregnenolone-sensitive manner. Overall, this work reveals that signal-specific inhibitors mimicking pregnenolone effects can be considered as promising new therapeutic tools to treat CIAPS.Molecular Psychiatry advance online publication, 21 February 2017; doi:10.1038/mp.2017.4.




09/11/2016 | Nature   IF 40.1
A cannabinoid link between mitochondria and memory.
Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, Zottola AC, Delamarre A, Cannich A, Vincent P, Varilh M, Robin LM, Terral G, Garcia-Fernandez MD, Colavita M, Mazier W, Drago F, Puente N, Reguero L, Elezgarai I, Dupuy JW, Cota D, Lopez-Rodriguez ML, Barreda-Gomez G, Massa F, Grandes P, Benard G, Marsicano G

Abstract:
Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Galphai protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.




2016 | f1000res   IF 1.1
Cannabinoid receptor type-1: breaking the dogmas.
Busquets Garcia A, Soria-Gomez E, Bellocchio L, Marsicano G

Abstract:
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.




23/09/2015 | Neuron   IF 14
Habenular CB Receptors Control the Expression of Aversive Memories.
Soria-Gomez E, Busquets-Garcia A, Hu F, Mehidi A, Cannich A, Roux L, Louit I, Alonso L, Wiesner T, Georges F, Verrier D, Vincent P, Ferreira G, Luo M, Marsicano G

Abstract:
Expression of aversive memories is key for survival, but the underlying brain mechanisms are not fully understood. Medial habenular (MHb) axons corelease glutamate and acetylcholine onto target postsynaptic interpeduncular (IPN) neurons, but their role in aversive memories has not been addressed so far. We found that cannabinoid type 1 receptors (CB1R), key regulators of aversive responses, are present at presynaptic terminals of MHb neurons in the IPN. Conditional deletion of CB1R from MHb neurons reduces fear-conditioned freezing and abolishes conditioned odor aversion in mice, without affecting neutral or appetitively motivated memories. Interestingly, local inhibition of nicotinic, but not glutamatergic receptors in the target region IPN before retrieval, rescues these phenotypes. Finally, optogenetic electrophysiological recordings of MHb-to-IPN circuitry revealed that blockade of CB1R specifically enhances cholinergic, but not glutamatergic, neurotransmission. Thus, presynaptic CB1R control expression of aversive memories by selectively modulating cholinergic transmission at MHb synapses in the IPN.




11/08/2015 | bioessays   IF 4.4
Dissecting the cannabinergic control of behavior: The where matters.
Busquets-Garcia A, Desprez T, Metna-Laurent M, Bellocchio L, Marsicano G, Soria-Gomez E

Abstract:
The endocannabinoid system is the target of the main psychoactive component of the plant Cannabis sativa, the Delta9 -tetrahydrocannabinol (THC). This system is composed by the cannabinoid receptors, the endogenous ligands, and the enzymes involved in their metabolic processes, which works both centrally and peripherally to regulate a plethora of physiological functions. This review aims at explaining how the site-specific actions of the endocannabinoid system impact on memory and feeding behavior through the cannabinoid receptors 1 (CB1 R). Centrally, CB1 R is widely distributed in many brain regions, different cell types (e.g. neuronal or glial cells) and intracellular compartments (e.g. mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB1 R according to their cell-type localization (e.g. glutamatergic or GABAergic neurons). Thus, understanding the cellular and subcellular function of CB1 R will provide new insights and aid the design of new compounds in cannabinoid-based medicine. Also watch the Video Abstract.




26/09/2014 | Mol Cell Endocrinol   IF 3.8
New insights on food intake control by olfactory processes: The emerging role of the endocannabinoid system.
Soria-Gomez E, Bellocchio L, Marsicano G

Abstract:
The internal state of the organism is an important modulator of perception and behavior. The link between hunger, olfaction and feeding behavior is one of the clearest examples of these connections. At the neurobiological level, olfactory circuits are the targets of several signals (i.e. hormones and nutrients) involved in energy balance. Indicating that olfactory areas are potential sensors of the internal state of the organism. Thus, the aim of this manuscript is to review the literature showing the interplay between metabolic signals in olfactory circuits and its impact on food intake.




03/06/2014 | Proc Natl Acad Sci U S A   IF 9.7
A restricted population of CB1 cannabinoid receptors with neuroprotective activity.
Chiarlone A, Bellocchio L, Blazquez C, Resel E, Soria-Gomez E, Cannich A, Ferrero JJ, Sagredo O, Benito C, Romero J, Sanchez-Prieto J, Lutz B, Fernandez-Ruiz J, Galve-Roperh I, Guzman M

Abstract:
The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies.




28/03/2014 | Neuroscience   IF 3.3
Cannabinoid type-1 receptors in the paraventricular nucleus of the hypothalamus inhibit stimulated food intake.
Soria-Gomez E, Massa F, Bellocchio L, Rueda-Orozco PE, Ciofi P, Cota D, Oliet SH, Prospero-Garcia O, Marsicano G

Abstract:
Cannabinoid receptor type 1 (CB1)-dependent signaling in the brain is known to modulate food intake. Recent evidence has actually shown that CB1 can both inhibit and stimulate food intake in fasting/refeeding conditions, depending on the specific neuronal circuits involved. However, the exact brain sites where this bimodal control is exerted and the underlying neurobiological mechanisms are not fully understood yet. Using pharmacological and electrophysiological approaches, we show that local CB1 blockade in the paraventricular nucleus of the hypothalamus (PVN) increases fasting-induced hyperphagia in rats. Furthermore, local CB1 blockade in the PVN also increases the orexigenic effect of the gut hormone ghrelin in animals fed ad libitum. At the electrophysiological level, CB1 blockade in slices containing the PVN potentiates the decrease of the activity of PVN neurons induced by long-term application of ghrelin. Hence, the PVN is (one of) the site(s) where signals associated with the body's energy status determine the direction of the effects of endocannabinoid signaling on food intake.




03/2014 | Nat Neurosci   IF 17.8
The endocannabinoid system controls food intake via olfactory processes.
Soria-Gomez E, Bellocchio L, Reguero L, Lepousez G, Martin C, Bendahmane M, Ruehle S, Remmers F, Desprez T, Matias I, Wiesner T, Cannich A, Nissant A, Wadleigh A, Pape HC, Chiarlone AP, Quarta C, Verrier D, Vincent P, Massa F, Lutz B, Guzman M, Gurden H, Ferreira G, Lledo PM, Grandes P, Marsicano G

Abstract:
Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior.