Page personnelle



Tél :
Envoyer un email

8 publication(s) depuis Janvier 2007:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

Neural circuit functions involve finely controlled excitation/inhibition interactions that allow complex neuronal computations and support high order brain functions such as learning and memory. Disinhibition, defined as a transient brake on inhibition that favors excitation, recently appeared to be a conserved circuit mechanism implicated in various functions such as sensory processing, learning and memory. Although vasoactive intestinal polypeptide (VIP) interneurons are considered to be the main disinhibitory cells, recent studies highlighted a pivotal role of somatostatin (SOM) interneurons in inhibiting GABAergic interneurons and promoting principal cell activation. Interestingly, long-term potentiation of excitatory input synapses onto hippocampal SOM interneurons is proposed as a lasting mechanism for regulation of disinhibition of principal neurons. Such regulation of network metaplasticity may be important for hippocampal-dependent learning and memory.

Cortical GABAergic interneurons represent a highly diverse neuronal type that regulates neural network activity. In particular, interneurons in the hippocampal CA1 oriens/alveus (O/A-INs) area provide feedback dendritic inhibition to local pyramidal cells and express somatostatin (SOM). Under relevant afferent stimulation patterns, they undergo long-term potentiation (LTP) of their excitatory synaptic inputs through multiple induction and expression mechanisms. However, the cell-type specificity of these different forms of LTP and their specific contribution to the dynamic regulation of the CA1 network remain unclear. Here we recorded from SOM-expressing interneurons (SOM-INs) in the O/A region from SOM-Cre-Ai3 transgenic mice in whole-cell patch-clamp. Results indicate that, like in anatomically identified O/A-INs, theta-burst stimulation (TBS) induced a Hebbian form of LTP dependent on metabotropic glutamate receptor type 1a (mGluR1a) in SOM-INs, but not in parvalbumin-expressing interneurons, another mainly nonoverlapping interneuron subtype in CA1. In addition, we demonstrated using field recordings from transgenic mice expressing archaerhodopsin 3 selectively in SOM-INs, that a prior conditioning TBS in O/A, to induce mGluR1a-dependent LTP in SOM-INs, upregulated LTP in the Schaffer collateral pathway of pyramidal cells. This effect was prevented by light-induced hyperpolarization of SOM-INs during TBS, or by application of the mGluR1a antagonist LY367385, indicating a necessity for mGluR1a and SOM-INs activation. These results uncover that SOM-INs perform an activity-dependent metaplastic control on hippocampal CA1 microcircuits in a cell-specific fashion. Our findings provide new insights on the contribution of interneuron synaptic plasticity in the regulation of the hippocampal network activity and mnemonic processes.

04/2015 | Ann Neurol   IF 10
Impaired neuronal operation through aberrant intrinsic plasticity in epilepsy.
Artinian J, Peret A, Mircheva Y, Marti G, Crepel V

OBJECTIVE: Patients with temporal lobe epilepsy often display cognitive comorbidity with recurrent seizures. However, the cellular mechanisms underlying the impairment of neuronal information processing remain poorly understood in temporal lobe epilepsy. Within the hippocampal formation neuronal networks undergo major reorganization, including the sprouting of mossy fibers in the dentate gyrus; they establish aberrant recurrent synapses between dentate granule cells and operate via postsynaptic kainate receptors. In this report, we tested the hypothesis that this aberrant local circuit alters information processing of perforant path inputs constituting the major excitatory afferent pathway from entorhinal cortex to dentate granule cells. METHODS: Experiments were performed in dentate granule cells from control rats and rats with temporal lobe epilepsy induced by pilocarpine hydrochloride treatment. Neurons were recorded in patch clamp in whole cell configuration in hippocampal slices. RESULTS: Our present data revealed that an aberrant readout of synaptic inputs by kainate receptors triggered a long-lasting impairment of the perforant path input-output operation in epileptic dentate granule cells. We demonstrated that this is due to the aberrant activity-dependent potentiation of the persistent sodium current altering intrinsic firing properties of dentate granule cells. INTERPRETATION: We propose that this aberrant activity-dependent intrinsic plasticity, which lastingly impairs the information processing of cortical inputs in dentate gyrus, may participate in hippocampal-related cognitive deficits, such as those reported in patients with epilepsy.

2014 | Learn Mem   IF 4.4
Characterization of spatial memory reconsolidation.
De Jaeger X, Courtey J, Brus M, Artinian J, Villain H, Bacquie E, Roullet P

Reconsolidation is necessary for the restabilization of reactivated memory traces. However, experimental parameters have been suggested as boundary conditions for this process. Here we investigated the role of a spatial memory trace's age, strength, and update on the reconsolidation process in mice. We first found that protein synthesis is necessary for reconsolidation to occur in the hippocampal CA3 region after reactivation of partially acquired and old memories but not for strongly acquired and recent memories. We also demonstrated that the update of a previously stable memory required, again, a memory reconsolidation in the hippocampal CA3. Finally, we found that the reactivation of a strongly acquired memory requires an activation of the anterior cingulate cortex as soon as 24 h after acquisition. This study demonstrates the importance of the knowledge of the task on the dynamic nature of memory reconsolidation processing.

02/2013 | Cereb Cortex   IF 6.8
Selective block of postsynaptic kainate receptors reveals their function at hippocampal mossy fiber synapses.
Pinheiro PS , Lanore F , Veran J , Artinian J , Blanchet C , Crepel V , Perrais D , Mulle C

Progress in understanding the roles of kainate receptors (KARs) in synaptic integration, synaptic networks, and higher brain function has been hampered by the lack of selective pharmacological tools. We have found that UBP310 and related willardiine derivatives, previously characterized as selective GluK1 and GluK3 KAR antagonists, block postsynaptic KARs at hippocampal mossy fiber (MF) CA3 synapses while sparing AMPA and NMDA receptors. We further show that UBP310 is an antagonist of recombinant GluK2/GluK5 receptors, the major population of KARs in the brain. Postsynaptic KAR receptor blockade at MF synapses significantly reduces the sustained depolarization, which builds up during repetitive activity, and impacts on spike transmission mediated by heterosynaptic signals. In addition, KARs present in aberrant MF synapses in the epileptic hippocampus were also blocked by UBP310. Our results support a specific role for postsynaptic KARs in synaptic integration of CA3 pyramidal cells and describe a tool that will be instrumental in understanding the physiopathological role of KARs in the brain.

Dentate granule cells, at the gate of the hippocampus, use coincidence detection of synaptic inputs to code afferent information under a sparse firing regime. In both human patients and animal models of temporal lobe epilepsy, mossy fibers sprout to form an aberrant glutamatergic network between dentate granule cells. These new synapses operate via long-lasting kainate receptor-mediated events, which are not present in the naive condition. Here, we report that in chronic epileptic rat, aberrant kainate receptors in interplay with the persistent sodium current dramatically expand the temporal window for synaptic integration. This introduces a multiplicative gain change in the input-output operation of dentate granule cells. As a result, their sparse firing is switched to an abnormal sustained and rhythmic mode. We conclude that synaptic kainate receptors dramatically alter the fundamental coding properties of dentate granule cells in temporal lobe epilepsy.

06/2008 | Eur J Neurosci
Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation.
Artinian J, McGauran AM, De Jaeger X, Mouledous L, Frances B, Roullet P

The formation of long-term memory requires protein synthesis, particularly during initial memory consolidation. This process also seems to be dependant upon protein degradation, particularly degradation by the ubiquitin-proteasome system. The aim of this study was to investigate the temporal requirement of protein synthesis and degradation during the initial consolidation of allocentric spatial learning. As memory returns to a labile state during reactivation, we also focus on the role of protein synthesis and degradation during memory reconsolidation of this spatial learning. Male CD1 mice were submitted to massed training in the spatial version of the Morris water maze. At various time intervals after initial acquisition or after a reactivation trial taking place 24 h after acquisition, mice received an injection of either the protein synthesis inhibitor anisomycin or the protein degradation inhibitor lactacystin. This injection was performed into the hippocampal CA3 region, which is specifically implicated in the processing of spatial information. Results show that, in the CA3 hippocampal region, consolidation of an allocentric spatial learning task requires two waves of protein synthesis taking place immediately and 4 h after acquisition, whereas reconsolidation requires only the first wave. However, for protein degradation, both consolidation and reconsolidation require only one wave, taking place immediately after acquisition or reactivation, respectively. These findings suggest that protein degradation is a key step for memory reconsolidation, as for consolidation. Moreover, as protein synthesis-dependent reconsolidation occurred faster than consolidation, reconsolidation did not consist of a simple repetition of the initial consolidation.

Our understanding of the memory reconsolidation process is at an earlier stage than that of consolidation. For example, it is unclear if, as for memory consolidation, reconsolidation of a memory trace necessitates protein synthesis. In fact, conflicting results appear in the literature and this discrepancy may be due to differences in the experimental reactivation procedure. Here, we addressed the question of whether protein synthesis in the CA3 hippocampal region is crucial in memory consolidation and reconsolidation of allocentric knowledge after reactivation in different experimental conditions in the Morris water maze. We showed (1) that an injection of the protein synthesis inhibitor anisomycin in the CA3 region during consolidation or after a single reactivation trial disrupted performance and (2) that protein synthesis is required even after a simple contextual reactivation without any learning trial and independently of the presence of the reinforcement. This work demonstrates that a simple exposure to the spatial environment is sufficient to reactivate the memory trace, to make it labile, and that reconsolidation of this trace requires de novo protein synthesis.