Page personnelle


Tél : 33(0)5 57 57 40 59
Envoyer un email

2020 – now: Postdoctoral researcher, Neurocentre Magendie, Supervisor: A Frick
2019 – 2020: Postdoctoral researcher, BSRC “Al. Fleming”, Supervisor: EMC Skoulakis
2013 – 2019: PhD, University of Crete - School of Medicine & BSRC 'Al. Fleming', Supervisor: EMC Skoulakis
2010 – 2012: MSc, National and Kapodistrian University of Athens, Graduate Program In Molecular Medicine - Neuroscience
2006 – 2010: BSc, Democritus University of Thrace, Department of Molecular Biology and Genetics

5 publication(s) depuis Septembre 2012:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

25/08/2020 | Proc Natl Acad Sci U S A   IF 9.4
One size does not fit all in Drosophila olfactory habituation.
Semelidou O, Skoulakis EMC


Habituation is the process that enables salience filtering, precipitating perceptual changes that alter the value of environmental stimuli. To discern the neuronal circuits underlying habituation to brief inconsequential stimuli, we developed a novel olfactory habituation paradigm, identifying two distinct phases of the response that engage distinct neuronal circuits. Responsiveness to the continuous odor stimulus is maintained initially, a phase we term habituation latency and requires Rutabaga Adenylyl-Cyclase-depended neurotransmission from GABAergic Antennal Lobe Interneurons and activation of excitatory Projection Neurons (PNs) and the Mushroom Bodies. In contrast, habituation depends on the inhibitory PNs of the middle Antenno-Cerebral Track, requires inner Antenno-Cerebral Track PN activation and defines a temporally distinct phase. Collectively, our data support the involvement of Lateral Horn excitatory and inhibitory stimulation in habituation. These results provide essential cellular substrates for future analyses of the molecular mechanisms that govern the duration and transition between these distinct temporal habituation phases. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).

10/10/2017 | Proc Natl Acad Sci U S A   IF 9.7
Drk-mediated signaling to Rho kinase is required for anesthesia-resistant memory in Drosophila.
Kotoula V, Moressis A, Semelidou O, Skoulakis EMC

Anesthesia-resistant memory (ARM) was described decades ago, but the mechanisms that underlie this protein synthesis-independent form of consolidated memory in Drosophila remain poorly understood. Whether the several signaling molecules, receptors, and synaptic proteins currently implicated in ARM operate in one or more pathways and how they function in the process remain unclear. We present evidence that Drk, the Drosophila ortholog of the adaptor protein Grb2, is essential for ARM within adult mushroom body neurons. Significantly, Drk signals engage the Rho kinase Drok, implicating dynamic cytoskeletal changes in ARM, and this is supported by reduced F-actin in the mutants and after pharmacological inhibition of Drok. Interestingly, Drk-Drok signaling appears independent of the function of Radish (Rsh), a protein long implicated in ARM, suggesting that the process involves at least two distinct molecular pathways. Based on these results, we propose that signaling pathways involved in structural plasticity likely underlie this form of translation-independent memory.

07/02/2017 | Proc Natl Acad Sci U S A   IF 9.7
Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome.
Mansilla A, Chaves-Sanjuan A, Campillo NE, Semelidou O, Martinez-Gonzalez L, Infantes L, Gonzalez-Rubio JM, Gil C, Conde S, Skoulakis EM, Ferrus A, Martinez A, Sanchez-Barrena MJ

The protein complex formed by the Ca(2+) sensor neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor protein Ric8a coregulates synapse number and probability of neurotransmitter release, emerging as a potential therapeutic target for diseases affecting synapses, such as fragile X syndrome (FXS), the most common heritable autism disorder. Using crystallographic data and the virtual screening of a chemical library, we identified a set of heterocyclic small molecules as potential inhibitors of the NCS-1/Ric8a interaction. The aminophenothiazine FD44 interferes with NCS-1/Ric8a binding, and it restores normal synapse number and associative learning in a Drosophila FXS model. The synaptic effects elicited by FD44 feeding are consistent with the genetic manipulation of NCS-1. The crystal structure of NCS-1 bound to FD44 and the structure-function studies performed with structurally close analogs explain the FD44 specificity and the mechanism of inhibition, in which the small molecule stabilizes a mobile C-terminal helix inside a hydrophobic crevice of NCS-1 to impede Ric8a interaction. Our study shows the drugability of the NCS-1/Ric8a interface and uncovers a suitable region in NCS-1 for development of additional drugs of potential use on FXS and related synaptic disorders.

Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.