Neurocentre Magendie

Miguel MORALES




Missionnaire

Tél :
Envoyer un email








2 publication(s) depuis Septembre 2012:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


06/12/2017 | Neuron   IF 14
Endocannabinoid Actions on Cortical Terminals Orchestrate Local Modulation of Dopamine Release in the Nucleus Accumbens.
Mateo Y, Johnson KA, Covey DP, Atwood BK, Wang HL, Zhang S, Gildish I, Cachope R, Bellocchio L, Guzman M, Morales M, Cheer JF, Lovinger DM

Abstract:
Dopamine (DA) transmission mediates numerous aspects of behavior. Although DA release is strongly linked to firing of DA neurons, recent developments indicate the importance of presynaptic modulation at striatal dopaminergic terminals. The endocannabinoid (eCB) system regulates DA release and is a canonical gatekeeper of goal-directed behavior. Here we report that extracellular DA increases induced by selective optogenetic activation of cholinergic neurons in the nucleus accumbens (NAc) are inhibited by CB1 agonists and eCBs. This modulation requires CB1 receptors on cortical glutamatergic afferents. Dopamine increases driven by optogenetic activation of prefrontal cortex (PFC) terminals in the NAc are similarly modulated by activation of these CB1 receptors. We further demonstrate that this same population of CB1 receptors modulates optical self-stimulation sustained by activation of PFC afferents in the NAc. These results establish local eCB actions on PFC terminals within the NAc that inhibit mesolimbic DA release and constrain reward-driven behavior.




09/2012 | Development   IF 5.8
Focal adhesion kinase regulates actin nucleation and neuronal filopodia formation during axonal growth.
Chacon MR, Navarro AI, Cuesto G, del Pino I, Scott R, Morales M, Rico B

Abstract:
The establishment of neural circuits depends on the ability of axonal growth cones to sense their surrounding environment en route to their target. To achieve this, a coordinated rearrangement of cytoskeleton in response to extracellular cues is essential. Although previous studies have identified different chemotropic and adhesion molecules that influence axonal development, the molecular mechanism by which these signals control the cytoskeleton remains poorly understood. Here, we show that in vivo conditional ablation of the focal adhesion kinase gene (Fak) from mouse hippocampal pyramidal cells impairs axon outgrowth and growth cone morphology during development, which leads to functional defects in neuronal connectivity. Time-lapse recordings and in vitro FRAP analysis indicate that filopodia motility is altered in growth cones lacking FAK, probably owing to deficient actin turnover. We reveal the intracellular pathway that underlies this process and describe how phosphorylation of the actin nucleation-promoting factor N-WASP is required for FAK-dependent filopodia formation. Our study reveals a novel mechanism through which FAK controls filopodia formation and actin nucleation during axonal development.