Page personnelle

Omar GUZMAN-QUEVEDO




Post-Doctorant

Tél : 33(0)5 57 57 37 02
Envoyer un email








16 publication(s) depuis Octobre 2006:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


01/2014 | acta physiol (oxf)   IF 5.9
Differential developmental programming by early protein restriction of rat skeletal muscle according to its fibre-type composition.
da Silva Aragao R, Guzman-Quevedo O, Perez-Garcia G, Toscano AE, Gois Leandro C, Manhaes-de-Castro R, Bolanos-Jimenez F

Abstract:
AIMS: Differences in fibre-type composition of skeletal muscle have been associated with obesity and insulin resistance. As a poor nutrient environment early in life is a predisposing factor for the development of obesity and related metabolic diseases at adulthood, this study aimed at determining the long-term consequences of maternal undernutrition on the structural and metabolic properties of two skeletal muscles characterized by their different fibre-type composition and metabolic properties. METHODS: The fibre-type composition and enzymatic activities of hexokinase (HK), beta-hydroxyacyl-CoA dehydrogenase (beta-HAD) and citrate synthase (CS) were measured in soleus and extensor digitorum longus (EDL) muscles from adult rats born to dams fed a control (17% protein) or a low-protein [8% protein (PR)] diet throughout pregnancy and lactation. In addition, the expression levels of several genes regulating glycolysis, fatty acid oxidation and mitochondrial biogenesis were determined by real-time PCR. RESULTS: Protein rats exhibited enhanced density of type II fibres along with decreased rate of fatty acid oxidation and glycolysis in soleus but not EDL. Malnourished rats exhibited also a different gene expression profile in soleus and EDL. Altogether, these alterations correspond to a state of energy deficiency and are present in animals which do not show yet any sign of obesity or glucose intolerance. CONCLUSION: We conclude that maternal protein restriction alters in the long term the structural and enzymatic properties of offspring skeletal muscle in a fibre-type-dependent manner. These alterations might have a causative role in the development of obesity and related metabolic disorders later in life.




2013 | PLoS ONE   IF 2.8
Impaired hypothalamic mTOR activation in the adult rat offspring born to mothers fed a low-protein diet.
Guzman-Quevedo O, Da Silva Aragao R, Perez Garcia G, Matos RJ, de Sa Braga Oliveira A, Manhaes de Castro R, Bolanos-Jimenez F

Abstract:
Several epidemiological and experimental studies have clearly established that maternal malnutrition induces a high risk of developing obesity and related metabolic diseases in the offspring. To determine if altered nutrient sensing might underlie this enhanced disease susceptibility, here we examined the effects of perinatal protein restriction on the activation of the nutrient sensor mTOR in response to acute variations in the nutritional status of the organism. Female Wistar rats were fed isocaloric diets containing either 17% protein (control) or 8% protein (PR) throughout pregnancy and lactation. At weaning offspring received standard chow and at 4 months of age the effects of fasting or fasting plus re-feeding on the phosphorylation levels of mTOR and its downstream target S6 ribosomal protein (rpS6) in the hypothalamus were assessed by immuno-fluorescence and western blot. Under ad libitum feeding conditions, PR rats exhibited decreased mTOR and rpS6 phosphorylation in the arcuate (ARC) and ventromedial (VMH) hypothalamic nuclei. Moreover, the phosphorylation of mTOR and rpS6 in these hypothalamic nuclei decreased with fasting in control but not in PR animals. Conversely, PR animals exhibited enhanced number of pmTOR imunostained cells in the paraventricular nucleus (PVN) and fasting decreased the activation of mTOR in the PVN of malnourished but not of control rats. These alterations occurred at a developmental stage at which perinatally-undernourished animals do not show yet obesity or glucose intolerance. Collectively, our observations suggest that altered hypothalamic nutrient sensing in response to an inadequate foetal and neonatal energetic environment is one of the basic mechanisms of the developmental programming of metabolic disorders and might play a causing role in the development of the metabolic syndrome induced by malnutrition during early life.




2013 | PLoS ONE   IF 2.8
Long-lasting effect of perinatal exposure to L-tryptophan on circadian clock of primary cell lines established from male offspring born from mothers fed on dietary protein restriction.
Nascimento E, Guzman-Quevedo O, Delacourt N, da Silva Aragao R, Perez-Garcia G, de Souza SL, Manhaes-de-Castro R, Bolanos-Jimenez F, Kaeffer B

Abstract:
BACKGROUND AIMS: Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation. METHODS: Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45-55 days) and adult (110-130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin. RESULTS: Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p = 0.0291) and adult (p = 0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p = 0.049), daily bolus (p<0.0001) and synchronizer hours (p = 0.0002). All factors were significantly interacting (p = 0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase. CONCLUSIONS: Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines.




2011 | PLoS ONE   IF 2.8
Non-invasive exploration of neonatal gastric epithelium by using exfoliated epithelial cells.
Kaeffer B, Legrand A, Moyon T, Frondas-Chauty A, Billard H, Guzman-Quevedo O, Darmaun D, Roze JC

Abstract:
BACKGROUND & AIMS: In preterm infants, exfoliated gastric epithelial cells can be retrieved from aspirates sampled through the naso-gastric feeding tube. Our aims were to determine (1) whether the recovery of exfoliated cells is feasible at any time from birth through the removal of the nasogastric tube, (2) whether they can be grown in culture in vitro, and (3) whether the physiological state of exfoliated cells expressing H+/K+ -ATPases reflects that of their counterparts remaining in situ at the surface of the gastric epithelium in neonatal rat pups. METHODS: In infants, gastric fluid aspirates were collected weekly after birth or every 3 hours over 24-h periods, and related to clinical parameters (Biocollection PROG/09/18). In rat pups submitted to a single fasting/refeeding cycle, we explored circadian exfoliation with the cellular counter-parts in the gland. All samples were analyzed by confocal imaging and Enzyme-Linked Immunosorbent Assay. RESULTS: Epithelial cells were identified by microscopy using membrane-bound anti-H+/K+ ATPases antibody, assessed for nucleus integrity, and the expression of selected proteins (autophagy, circadian clock). On 34 infants, the H+/K+-ATPase-positive cells were consistently found quiescent, regardless of gestational age and feeding schedule from day-5 of life to the day of removal of the naso-gastric tube. By logistic regression analysis, we did find a positive correlation between the intensity of exfoliation (cellular loss per sample) and the postnatal age (p<0.001). The H+/K+ ATPase-positive cells established in culture retained the expression of a biomarker of progenitor status (Pouf5F1-Oct4). In rat pups, the expression pattern of Survivin in H+/K+ ATPase-positive exfoliated cells paralleled that observed in cells remaining at the surface of the gastric gland. CONCLUSIONS: Tracking parietal cells can improve clinical monitoring and understanding of the autophagic death via the phosphatidylinositol 3-kinase/Akt/survivin pathway.




2010 | PLoS ONE   IF 2.8
Nutritional programming in the rat is linked to long-lasting changes in nutrient sensing and energy homeostasis in the hypothalamus.
Orozco-Solis R, Matos RJ, Guzman-Quevedo O, Lopes de Souza S, Bihouee A, Houlgatte R, Manhaes de Castro R, Bolanos-Jimenez F

Abstract:
BACKGROUND: Nutrient deficiency during perinatal development is associated with an increased risk to develop obesity, diabetes and hypertension in the adulthood. However, the molecular mechanisms underlying the developmental programming of the metabolic syndrome remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Given the essential role of the hypothalamus in the integration of nutritional, endocrine and neuronal cues, here we have analyzed the profile of the hypothalamus transcriptome in 180 days-old rats born to dams fed either a control (200 g/kg) or a low-protein (80 g/kg) diet through pregnancy and lactation. From a total of 26 209 examined genes, 688 were up-regulated and 309 down-regulated (P<0.003) by early protein restriction. Further bioinformatic analysis of the data revealed that perinatal protein restriction permanently alters the expression of two gene clusters regulating common cellular processes. The first one includes several gate keeper genes regulating insulin signaling and nutrient sensing. The second cluster encompasses a functional network of nuclear receptors and co-regulators of transcription involved in the detection and use of lipid nutrients as fuel which, in addition, link temporal and nutritional cues to metabolism through their tight interaction with the circadian clock. CONCLUSIONS/SIGNIFICANCE: Collectively, these results indicate that the programming of the hypothalamic circuits regulating energy homeostasis is a key step in the development of obesity associated with malnutrition in early life and provide a valuable resource for further investigating the role of the hypothalamus in the programming of the metabolic syndrome.




02/10/2006 | FEBS Lett   IF 2.7
Expression of tryptophan hydroxylase in developing mouse taste papillae.
Ortiz-Alvarado R, Guzman-Quevedo O, Mercado-Camargo R, Haertle T, Vignes C, Bolanos-Jimenez F

Abstract:
Gustatory papillae and associated taste buds receive and process chemical information from the environment. In mammals, their development takes place during the late phase of embryogenesis. However, the cellular factors that regulate the differentiation of taste papillae remain largely unknown. Here, we show by quantitative real time RT-PCR that both isoforms of tryptophan hydroxylase (TPH1 and TPH2), the first and rate limiting enzyme of serotonin (5-HT) synthesis, are expressed in developing circumvallate papillae. Immuno-staining experiments further indicated that TPH is localized both in gustatory fibers and in differentiated taste receptor cells. These results point to the synthesis of 5-HT in gustatory papillae, and allow one to hypothesize that the development of taste buds might be modulated by serotonin.