Neurocentre Magendie

Nicolas SAUCISSE





Tél : 33(0)5 57 57 37 06
Envoyer un email








5 publication(s) depuis Novembre 2014:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


13/04/2018 | Mol Metab   IF 6.3
mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin.
Haissaguerre M, Ferriere A, Simon V, Saucisse N, Dupuy N, Andre C, Clark S, Guzman-Quevedo O, Tabarin A, Cota D

Abstract:
OBJECTIVE: Nutrient availability modulates reactive oxygen species (ROS) production in the hypothalamus. In turn, ROS regulate hypothalamic neuronal activity and feeding behavior. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is an important cellular integrator of the action of nutrients and hormones. Here we tested the hypothesis that modulation of mTORC1 activity, particularly in Proopiomelanocortin (POMC)-expressing neurons, mediates the cellular and behavioral effects of ROS. METHODS: C57BL/6J mice or controls and their knockout (KO) littermates deficient either for the mTORC1 downstream target 70-kDa ribosomal protein S6 kinase 1 (S6K1) or for the mTORC1 component Rptor specifically in POMC neurons (POMC-rptor-KO) were treated with an intracerebroventricular (icv) injection of the ROS hydrogen peroxide (H2O2) or the ROS scavenger honokiol, alone or, respectively, in combination with the mTORC1 inhibitor rapamycin or the mTORC1 activator leptin. Oxidant-related signal in POMC neurons was assessed using dihydroethidium (DHE) fluorescence. RESULTS: Icv administration of H2O2 decreased food intake, while co-administration of rapamycin, whole-body deletion of S6K1, or deletion of rptor in POMC neurons impeded the anorectic action of H2O2. H2O2 also increased oxidant levels in POMC neurons, an effect that hinged on functional mTORC1 in these neurons. Finally, scavenging ROS prevented the hypophagic action of leptin, which in turn required mTORC1 to increase oxidant levels in POMC neurons and to inhibit food intake. CONCLUSIONS: Our results demonstrate that ROS and leptin require mTORC1 pathway activity in POMC neurons to increase oxidant levels in POMC neurons and consequently decrease food intake.




26/10/2017 | Gut   IF 17
Liver Reptin/RUVBL2 controls glucose and lipid metabolism with opposite actions on mTORC1 and mTORC2 signalling.
Javary J, Allain-Courtois N, Saucisse N, Costet P, Heraud C, Benhamed F, Pierre R, Bure C, Pallares-Lupon N, Do Cruzeiro M, Postic C, Cota D, Dubus P, Rosenbaum J, Benhamouche-Trouillet S

Abstract:
OBJECTIVE: The AAA+ ATPase Reptin is overexpressed in hepatocellular carcinoma and preclinical studies indicate that it could be a relevant therapeutic target. However, its physiological and pathophysiological roles in vivo remain unknown. This study aimed to determine the role of Reptin in mammalian adult liver. DESIGN AND RESULTS: We generated an inducible liver-specific Reptin knockout (RepinLKO ) mouse model. Following Reptin invalidation, mice displayed decreased body and fat mass, hypoglycaemia and hypolipidaemia. This was associated with decreased hepatic mTOR protein abundance. Further experiments in primary hepatocytes demonstrated that Reptin maintains mTOR protein level through its ATPase activity. Unexpectedly, loss or inhibition of Reptin induced an opposite effect on mTORC1 and mTORC2 signalling, with: (1) strong inhibition of hepatic mTORC1 activity, likely responsible for the reduction of hepatocytes cell size, for decreased de novo lipogenesis and cholesterol transcriptional programmes and (2) enhancement of mTORC2 activity associated with inhibition of the gluconeogenesis transcriptional programme and hepatic glucose production. Consequently, the role of hepatic Reptin in the pathogenesis of insulin resistance (IR) and non-alcoholic fatty liver disease consecutive to a high-fat diet was investigated. We found that Reptin deletion completely rescued pathological phenotypes associated with IR, including glucose intolerance, hyperglycaemia, hyperlipidaemia and hepatic steatosis. CONCLUSION: We show here that the AAA +ATPase Reptin is a regulator of mTOR signalling in the liver and global glucido-lipidic homeostasis. Inhibition of hepatic Reptin expression or activity represents a new therapeutic perspective for metabolic syndrome.




10/2015 | Trends Endocrin Met   IF 10.8
The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease.
Mazier W*, Saucisse N*, Cherifi-Gatta B, Cota D

Abstract:
The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.




18/02/2015 | J Neurosci   IF 6
Microglial activation enhances associative taste memory through purinergic modulation of glutamatergic neurotransmission.
Delpech JC, Saucisse N, Parkes SL, Lacabanne C, Aubert A, Casenave F, Coutureau E, Sans N, Laye S, Ferreira G, Nadjar A

Abstract:
The cerebral innate immune system is able to modulate brain functioning and cognitive processes. During activation of the cerebral innate immune system, inflammatory factors produced by microglia, such as cytokines and adenosine triphosphate (ATP), have been directly linked to modulation of glutamatergic system on one hand and learning and memory functions on the other hand. However, the cellular mechanisms by which microglial activation modulates cognitive processes are still unclear. Here, we used taste memory tasks, highly dependent on glutamatergic transmission in the insular cortex, to investigate the behavioral and cellular impacts of an inflammation restricted to this cortical area in rats. We first show that intrainsular infusion of the endotoxin lipopolysaccharide induces a local inflammation and increases glutamatergic AMPA, but not NMDA, receptor expression at the synaptic level. This cortical inflammation also enhances associative, but not incidental, taste memory through increase of glutamatergic AMPA receptor trafficking. Moreover, we demonstrate that ATP, but not proinflammatory cytokines, is responsible for inflammation-induced enhancement of both associative taste memory and AMPA receptor expression in insular cortex. In conclusion, we propose that inflammation restricted to the insular cortex enhances associative taste memory through a purinergic-dependent increase of glutamatergic AMPA receptor expression at the synapse.




11/2014 | Mol Cell Endocrinol   IF 3.6
Influence of mTOR in energy and metabolic homeostasis.
Haissaguerre M*, Saucisse N*, Cota D

Abstract:
The mechanistic (or mammalian) target of rapamycin couples a variety of different environmental signals, including nutrients and hormones, with the regulation of several energy-demanding cellular functions, spanning from protein and lipid synthesis to mitochondrial activity and cytoskeleton dynamics. mTOR forms two distinct protein complexes in cells, mTORC1 and mTORC2. This review focuses on recent advances made in understanding the roles played by these two complexes in the regulation of whole body metabolic homeostasis. Studies carried out in the past few years have shown that mTORC1 activity in the hypothalamus varies by cell and stimulus type, and that this complex is critically implicated in the regulation of food intake and body weight and in the central actions of both nutrients and hormones, such as leptin, ghrelin and triiodothyronine. As a regulator of cellular anabolic processes, mTORC1 activity in the periphery favors adipogenesis, lipogenesis, glucose uptake and beta-cell mass expansion. Much less is known about the function of mTORC2 in the hypothalamus, while in peripheral organs this second complex exerts roles strikingly similar to those described for mTORC1. Deregulation of mTORC1 and mTORC2 is associated with obesity, type 2 diabetes, cancer and neurodegenerative disorders. Insights on the exact relationship between mTORC1 and mTORC2 in the context of the regulation of metabolic homeostasis and on the specific molecular mechanisms engaged by these two complexes in such regulation may provide new avenues for therapy.