Page personnelle

Agnès GREL


Phone : 33(0)5 57 57 36 76
Send an email

2 publication(s) since Juillet 2017:

Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in

09/12/2019 | J Neurosci Methods   IF 2.8
Alpha technology: A powerful tool to detect mouse brain intracellular signaling events.
Zanese M*, Tomaselli G*, Roullot-Lacarriere V, Moreau M, Bellocchio L, Grel A, Marsicano G, Sans N, Vallee M, Revest JM

BACKGROUND: Phosphorylation by protein kinases is a fundamental molecular process involved in the regulation of signaling activities in living organisms. Understanding this complex network of phosphorylation, especially phosphoproteins, is a necessary step for grasping the basis of cellular pathophysiology. Studying brain intracellular signaling is a particularly complex task due to the heterogeneous complex nature of the brain tissue, which consists of many embedded structures. NEW METHOD: Overcoming this degree of complexity requires a technology with a high throughput and economical in the amount of biological material used, so that a large number of signaling pathways may be analyzed in a large number of samples. We have turned to Alpha (Amplified Luminescent Proximity Homogeneous Assay) technology. COMPARISON WITH EXISTING METHOD: Western blot is certainly the most commonly used method to measure the phosphorylation state of proteins. Even though Western blot is an accurate and reliable method for analyzing modifications of proteins, it is a time-consuming and large amounts of samples are required. Those two parameters are critical when the goal of the research is to comprehend multi-signaling proteic events so as to analyze several targets from small brain areas. RESULT: Here we demonstrate that Alpha technology is particularly suitable for studying brain signaling pathways by allowing rapid, sensitive, reproducible and semi-quantitative detection of phosphoproteins from individual mouse brain tissue homogenates and from cell fractionation and synaptosomal preparations of mouse hippocampus. CONCLUSION: Alpha technology represents a major experimental step forward in unraveling the brain phosphoprotein-related molecular mechanisms involved in brain-related disorders.

05/07/2017 | curr protoc neurosci
Cannabinoid-Induced Tetrad in Mice.
Metna-Laurent M, Mondesir M, Grel A, Vallee M, Piazza PV

Cannabinoid-induced tetrad is a preclinical model commonly used to evaluate if a pharmacological compound is an agonist of the central type-1 cannabinoid (CB1) receptor in rodents. The tetrad is characterized by hypolocomotion, hypothermia, catalepsy, and analgesia, four phenotypes that are induced by acute administration of CB1 agonists exemplified by the prototypic cannabinoid delta-9-tetrahydrocannabinol (THC). This unit describes a standard protocol in mice to induce tetrad phenotypes with THC as reference cannabinoid. We provide typical results obtained with this procedure showing a dose effect of THC in different mouse strains. The effect of the CB1 antagonist rimonabant is also shown. This tetrad protocol is well adapted to reveal new compounds acting on CB1 receptors in vivo. (c) 2017 by John Wiley & Sons, Inc.