Page personnelle

Vincent DOUSSET




74 publication(s) since Février 1995:


Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in


30/01/2018 | Neuroimage   IF 5.4
Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: Applications to experimental multiple sclerosis.
Crombe A, Planche V, Raffard G, Bourel J, Dubourdieu N, Panatier A, Fukutomi H, Dousset V, Oliet S, Hiba B, Tourdias T

Abstract:
The hippocampus contains distinct populations of neurons organized into separate anatomical subfields and layers with differential vulnerability to pathological mechanisms. The ability of in vivo neuroimaging to pinpoint regional vulnerability is especially important for better understanding of hippocampal pathology at the early stage of neurodegenerative disorders and for monitoring future therapeutic strategies. This is the case for instance in multiple sclerosis whose neurodegenerative component can affect the hippocampus from the early stage. We challenged the capacity of two models, i.e. the classical diffusion tensor imaging (DTI) model and the neurite orientation dispersion and density imaging (NODDI) model, to compute quantitative diffusion MRI that could capture microstructural alterations in the individual hippocampal layers of experimental-autoimmune encephalomyelitis (EAE) mice, the animal model of multiple sclerosis. To achieve this, the hippocampal anatomy of a healthy mouse brain was first explored ex vivo with high resolution DTI and NODDI. Then, 18 EAE mice and 18 control mice were explored 20 days after immunization with in vivo diffusion MRI prior to sacrifice for the histological quantification of neurites and glial markers in each hippocampal layer. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) maps were computed from the DTI model while the orientation dispersion index (ODI), the neurite density index (NDI) and the volume fraction of isotropic diffusivity (isoVF) maps were computed from the NODDI model. We first showed in control mice that color-coded FA and ODI maps can delineate three main hippocampal layers. The quantification of FA, AD, RD, MD, ODI, NDI and isoVF presented differences within these 3 layers, especially within the molecular layer of the dentate gyrus which displayed a specific signature based on a combination of AD (or MD), ODI and NDI. Then, the comparison between EAE and control mice showed a decrease of AD (p=0.036) and of MD (p=0.033) selectively within the molecular layer of EAE mice while NODDI indices did not present any difference between EAE and control mice in any layer. Histological analyses confirmed the differential vulnerability of the molecular layer of EAE mice that exhibited decreased dendritic length and decreased dendritic complexity together with activated microglia. Dendritic length and intersections within the molecular layer were independent contributors to the observed decrease of AD (R(2)=0.37 and R(2)=0.40, p<0.0001) and MD (R(2)=0.41 and R(2)=0.42, p<0.0001). We therefore identified that NODDI maps can help to highlight the internal microanatomy of the hippocampus but NODDI still presents limitations in grey matter as it failed to capture selective dendritic alterations occurring at early stages of a neurodegenerative disease such as multiple sclerosis, whereas DTI maps were significantly altered.




13/01/2018 | Hum Brain Mapp   IF 4.9
Regional hippocampal vulnerability in early multiple sclerosis: Dynamic pathological spreading from dentate gyrus to CA1.
Planche V, Koubiyr I, Romero JE, Manjon JV, Coupe P, Deloire M, Dousset V, Brochet B, Ruet A, Tourdias T

Abstract:
BACKGROUND: Whether hippocampal subfields are differentially vulnerable at the earliest stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic of debate. METHOD: We prospectively included 56 persons with clinically isolated syndrome (CIS) suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at baseline. Participants were tested for memory performance and scanned with 3 T MRI to assess the volume of 5 distinct hippocampal subfields using automatic segmentation techniques. RESULTS: At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume significantly smaller than controls (p < .01). After one year, CA4/dentate gyrus atrophy worsened (-6.4%, p < .0001) and significant CA1 atrophy appeared (both in the stratum-pyramidale and the stratum radiatum-lacunosum-moleculare, -5.6%, p < .001 and -6.2%, p < .01, respectively). CA4/dentate gyrus volume at baseline predicted CA1 volume one year after CIS (R(2) = 0.44 to 0.47, p < .001, with age, T2 lesion-load, and global brain atrophy as covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis during follow-up, independently of T2-lesion load and demographic variables (p < .05). Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 atrophy was an independent correlate of episodic verbal memory performance one year after CIS (ss = 0.87, p < .05). CONCLUSION: The hippocampal degenerative process spread from dentate gyrus to CA1 at the earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS and will ultimately impact hippocampal-dependent memory performance.




2017 | PLoS ONE   IF 2.8
Microstructural analyses of the posterior cerebellar lobules in relapsing-onset multiple sclerosis and their implication in cognitive impairment.
Moroso A, Ruet A, Lamargue-Hamel D, Munsch F, Deloire M, Coupe P, Charre-Morin J, Saubusse A, Ouallet JC, Planche V, Tourdias T, Dousset V, Brochet B

Abstract:
BACKGROUND: The posterior cerebellar lobules seem to be the anatomical substrate of cognitive cerebellar processes, but their microstructural alterations in multiple sclerosis (MS) remain unclear. OBJECTIVES: To correlate diffusion metrics in lobules VI to VIIIb in persons with clinically isolated syndrome (PwCIS) and in cognitively impaired persons with MS (CIPwMS) with their cognitive performances. METHODS: Sixty-nine patients (37 PwCIS, 32 CIPwMS) and 36 matched healthy subjects (HS) underwent 3T magnetic resonance imaging, including 3D T1-weighted and diffusion tensor imaging (DTI). Fractional anisotropy (FA) and mean diffusivity (MD) were calculated within each lobule and in the cerebellar peduncles. We investigated the correlations between cognitive outcomes and the diffusion parameters of cerebellar sub-structures and performed multiple linear regression analysis to predict cognitive disability. RESULTS: FA was generally lower and MD was higher in the cerebellum and specifically in the vermis Crus II, lobules VIIb and VIIIb in CIPwMS compared with PwCIS and HS. In hierarchical regression analyses, 31% of the working memory z score variance was explained by FA in the left lobule VI and in the left superior peduncle. Working memory was also associated with MD in the vermis Crus II. FA in the left lobule VI and right VIIIa predicted part of the information processing speed (IPS) z scores. CONCLUSION: DTI indicators of cerebellar microstructural damage were associated with cognitive deficits in MS. Our results suggested that cerebellar lobular alterations have an impact on attention, working memory and IPS.




2017 | Brain   IF 10.8
Thalamic alterations remote to infarct appear as focal iron accumulation and impact clinical outcome
Kuchcinski G, Munsch F, Lopes R, Bigourdan A, Su J, Sagnier S, Renou P, Pruvo JP, Rutt BK, Dousset V, Tourdias T

Abstract:





12/11/2016 | Brain Behav Immun   IF 6.3
Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis.
Planche V, Panatier A, Hiba B, Ducourneau EG, Raffard G, Dubourdieu N, Maitre M, Leste-Lasserre T, Brochet B, Dousset V, Desmedt A, Oliet SH, Tourdias T

Abstract:
Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis.




27/10/2016 | J Neurol Neurosurg Psychiatry   IF 7.1
Posterior lobules of the cerebellum and information processing speed at various stages of multiple sclerosis.
Moroso A, Ruet A, Lamargue-Hamel D, Munsch F, Deloire M, Coupe P, Ouallet JC, Planche V, Moscufo N, Meier DS, Tourdias T, Guttmann CR, Dousset V, Brochet B

Abstract:
BACKGROUND: Cerebellar damage has been implicated in information processing speed (IPS) impairment associated with multiple sclerosis (MS) that might result from functional disconnection in the frontocerebellar loop. Structural alterations in individual posterior lobules, in which cognitive functioning seems preponderant, are still unknown. Our aim was to investigate the impact of grey matter (GM) volume alterations in lobules VI to VIIIb on IPS in persons with clinically isolated syndrome (PwCIS), MS (PwMS) and healthy subjects (HS). METHODS: 69 patients (37 PwCIS, 32 PwMS) and 36 HS underwent 3 T MRI including 3-dimensional T1-weighted MRIs. Cerebellum lobules were segmented using SUIT V.3.0 to estimate their normalised GM volume. Neuropsychological testing was performed to assess IPS and main cognitive functions. RESULTS: Normalised GM volumes were significantly different between PwMS and HS for the right (p<0.001) and left lobule VI (p<0.01), left crus I, right VIIb and entire cerebellum (p<0.05 for each comparison) and between PwMS and PwCIS for all lobules in subregions VI and left crus I (p<0.05). IPS, attention and working memory were impaired in PwMS compared with PwCIS. In the whole population of patients (PwMS and PwCIS), GM loss in vermis VI (R2=0.36; p<0.05 when considering age and T2 lesion volume as covariates) were associated with IPS impairment. CONCLUSIONS: GM volume decrease in posterior lobules (especially vermis VI) was associated with reduced IPS. Our results suggest a significant impact of posterior lobules pathology in corticocerebellar loop disruption resulting in automation and cognitive optimisation lack in MS. TRIAL REGISTRATION: Clinicaltrail NCT01207856, NCT01865357; Pre-results.




25/10/2016 | Mult Scler   IF 5.3
Hippocampal microstructural damage correlates with memory impairment in clinically isolated syndrome suggestive of multiple sclerosis.
Planche V, Ruet A, Coupe P, Lamargue-Hamel D, Deloire M, Pereira B, Manjon JV, Munsch F, Moscufo N, Meier DS, Guttmann CR, Dousset V, Brochet B, Tourdias T

Abstract:
OBJECTIVE: We investigated whether diffusion tensor imaging (DTI) could reveal early hippocampal damage and clinically relevant correlates of memory impairment in persons with clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS). METHODS: A total of 37 persons with CIS, 32 with MS and 36 controls prospectively included from 2011 to 2014 were tested for cognitive performances and scanned with 3T-magnetic resonance imaging (MRI) to assess volumetric and DTI changes within the hippocampus, whole brain volume and T2-lesion load. RESULTS: While there was no hippocampal atrophy in the CIS group, hippocampal fractional anisotropy (FA) was significantly decreased compared to controls. Decrease in hippocampal FA together with increased mean diffusivity (MD) was even more prominent in MS patients. In CIS, hippocampal MD was correlated with episodic verbal memory performance (r = -0.57, p = 0.0002 and odds ratio (OR) = 0.058, 95% confidence interval (CI) = 0.0057-0.59, p = 0.016 adjusted for age, gender, depression and T2-lesion load), but not with cognitive tasks unrelated to hippocampal functions. Hippocampal MD was the only variable discriminating memory-impaired from memory-preserved persons with CIS (area under the curve (AUC) = 0.77, sensitivity = 90.0%, specificity = 70.3%, positive predictive value (PPV) = 52.9%, negative predictive value (NPV) = 95.0%). CONCLUSION: DTI alterations within the hippocampus might reflect early neurodegenerative processes that are correlated with episodic memory performance, discriminating persons with CIS according to their memory status.




30/06/2016 | AJNR Am J Neuroradiol   IF 3.7
Cervical Spinal Cord DTI Is Improved by Reduced FOV with Specific Balance between the Number of Diffusion Gradient Directions and Averages.
Crombe A, Alberti N, Hiba B, Uettwiller M, Dousset V, Tourdias T

Abstract:
BACKGROUND AND PURPOSE: Reduced-FOV DTI is promising for exploring the cervical spinal cord, but the optimal set of parameters needs to be clarified. We hypothesized that the number of excitations should be favored over the number of diffusion gradient directions regarding the strong orientation of the cord in a single rostrocaudal axis. MATERIALS AND METHODS: Fifteen healthy individuals underwent cervical spinal cord MR imaging at 3T, including an anatomic 3D-Multi-Echo Recombined Gradient Echo, high-resolution full-FOV DTI with a NEX of 3 and 20 diffusion gradient directions and 5 sets of reduced-FOV DTIs differently balanced in terms of NEX/number of diffusion gradient directions: (NEX/number of diffusion gradient directions = 3/20, 5/16, 7/12, 9/9, and 12/6). Each DTI sequence lasted 4 minutes 30 seconds, an acceptable duration, to cover C1-C4 in the axial plane. Fractional anisotropy maps and tractograms were reconstructed. Qualitatively, 2 radiologists rated the DTI sets blinded to the sequence. Quantitatively, we compared distortions, SNR, variance of fractional anisotropy values, and numbers of detected fibers. RESULTS: Qualitatively, reduced-FOV DTI sequences with a NEX of >/=5 were significantly better rated than the full-FOV DTI and the reduced-FOV DTI with low NEX (N = 3) and a high number of diffusion gradient directions (D = 20). Quantitatively, the best trade-off was reached by the reduced-FOV DTI with a NEX of 9 and 9 diffusion gradient directions, which provided significantly fewer artifacts, higher SNR on trace at b = 750 s/mm2 and an increased number of fibers tracked while maintaining similar fractional anisotropy values and dispersion. CONCLUSIONS: Optimized reduced-FOV DTI improves spinal cord imaging. The best compromise was obtained with a NEX of 9 and 9 diffusion gradient directions, which emphasizes the need for increasing the NEX at the expense of the number of diffusion gradient directions for spinal cord DTI contrary to brain DTI.




04/2016 | Stroke   IF 6.2
Early Fiber Number Ratio Is a Surrogate of Corticospinal Tract Integrity and Predicts Motor Recovery After Stroke.
Bigourdan A, Munsch F, Coupe P, Guttmann CR, Sagnier S, Renou P, Debruxelles S, Poli M, Dousset V, Sibon I, Tourdias T

Abstract:
BACKGROUND AND PURPOSE: The contribution of imaging metrics to predict poststroke motor recovery needs to be clarified. We tested the added value of early diffusion tensor imaging (DTI) of the corticospinal tract toward predicting long-term motor recovery. METHODS: One hundred seventeen patients were prospectively assessed at 24 to 72 hours and 1 year after ischemic stroke with diffusion tensor imaging and motor scores (Fugl-Meyer). The initial fiber number ratio (iFNr) and final fiber number ratio were computed as the number of streamlines along the affected corticospinal tract normalized to the unaffected side and were compared with each other. The prediction of motor recovery (DeltaFugl-Meyer) was first modeled using initial Fugl-Meyer and iFNr. Multivariate ordinal logistic regression models were also used to study the association of iFNr, initial Fugl-Meyer, age, and stroke volume with Fugl-Meyer at 1 year. RESULTS: The iFNr correlated with the final fiber number ratio at 1 year (r=0.70; P<0.0001). The initial Fugl-Meyer strongly predicted motor recovery ( approximately 73% of initial impairment) for all patients except those with initial severe stroke (Fugl-Meyer<50). For these severe patients (n=26), initial Fugl-Meyer was not correlated with motor recovery (R(2)=0.13; p=ns), whereas iFNr showed strong correlation (R(2)=0.56; P<0.0001). In multivariate analysis, the iFNr was an independent predictor of motor outcome (beta=2.601; 95% confidence interval=0.304-5.110; P=0.031), improving prediction compared with using only initial Fugl-Meyer, age, and stroke volume (P=0.026). CONCLUSIONS: Early measurement of FNr at 24 to 72 hours poststroke is a surrogate marker of corticospinal tract integrity and provides independent prediction of motor outcome at 1 year especially for patients with severe initial impairment.




01/2016 | Stroke   IF 6.2
Stroke Location Is an Independent Predictor of Cognitive Outcome.
Munsch F, Sagnier S, Asselineau J, Bigourdan A, Guttmann CR, Debruxelles S, Poli M, Renou P, Perez P, Dousset V, Sibon I, Tourdias T

Abstract:
BACKGROUND AND PURPOSE: On top of functional outcome, accurate prediction of cognitive outcome for stroke patients is an unmet need with major implications for clinical management. We investigated whether stroke location may contribute independent prognostic value to multifactorial predictive models of functional and cognitive outcomes. METHODS: Four hundred twenty-eight consecutive patients with ischemic stroke were prospectively assessed with magnetic resonance imaging at 24 to 72 hours and at 3 months for functional outcome using the modified Rankin Scale and cognitive outcome using the Montreal Cognitive Assessment (MoCA). Statistical maps of functional and cognitive eloquent regions were derived from the first 215 patients (development sample) using voxel-based lesion-symptom mapping. We used multivariate logistic regression models to study the influence of stroke location (number of eloquent voxels from voxel-based lesion-symptom mapping maps), age, initial National Institutes of Health Stroke Scale and stroke volume on modified Rankin Scale and MoCA. The second part of our cohort was used as an independent replication sample. RESULTS: In univariate analyses, stroke location, age, initial National Institutes of Health Stroke Scale, and stroke volume were all predictive of poor modified Rankin Scale and MoCA. In multivariable analyses, stroke location remained the strongest independent predictor of MoCA and significantly improved the prediction compared with using only age, initial National Institutes of Health Stroke Scale, and stroke volume (area under the curve increased from 0.697-0.771; difference=0.073; 95% confidence interval, 0.008-0.155). In contrast, stroke location did not persist as independent predictor of modified Rankin Scale that was mainly driven by initial National Institutes of Health Stroke Scale (area under the curve going from 0.840 to 0.835). Similar results were obtained in the replication sample. CONCLUSIONS: Stroke location is an independent predictor of cognitive outcome (MoCA) at 3 months post stroke.