Page personnelle


Phone : 33(0)5 57 57 37 35
Send an email

35 publication(s) since Avril 1987:

Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in

01/2009 | Neurobiol Dis
Insular cortex representation of dynamic mechanical allodynia in trigeminal neuropathic rats
Alvarez P, Dieb W, Hafidi A, Voisin D L, Dallel R

Dynamic mechanical allodynia is a widespread symptom of neuropathic pain for which mechanisms are still poorly understood. The present study investigated the organization of dynamic mechanical allodynia processing in the rat insular cortex after chronic constriction injury to the infraorbital nerve (IoN-CCI). Two weeks after unilateral IoN-CCI, rats showed a dramatic bilateral trigeminal dynamic mechanical allodynia. Light, moving stroking of the infraorbital skin resulted in strong, bilateral upregulation of extracellular-signal regulated kinase phosphorylation (pERK-1/2) in the insular cortex of IoN-CCI animals but not sham rats, in whose levels were similar to those of unstimulated IoN-CCI rats. pERK-1/2 was located in neuronal cells only. Stimulus-evoked pERK-1/2 immunopositive cell bodies displayed rostrocaudal gradient and layer selective distribution in the insula, being predominant in the rostral insula and in layers II-III of the dysgranular and to a lesser extent, of the agranular insular cortex. In layers II-III of the rostral dysgranular insular cortex, intense pERK also extended into distal dendrites, up to layer I. These results demonstrate that trigeminal nerve injury induces a significant alteration in the insular cortex processing of tactile stimuli and suggest that ERK phosphorylation contributes to the mechanisms underlying abnormal pain perception under this condition.

15/07/2008 | Pain
Dorsal horn NK1-expressing neurons control windup of downstream trigeminal nociceptive neurons
Coste J, Voisin D L, Miraucourt L S, Dallel R, Luccarini P

Windup is a progressive, frequency-dependent increase in the excitability of trigeminal and spinal dorsal horn wide dynamic range (WDR) nociceptive neurons to repetitive stimulation of primary afferent nociceptive C-fibers. Superficial dorsal horn neurokinin 1 receptor (NK1R)-expressing neurons were recently shown to regulate sensitization of WDR nociceptive neurons through activation of a defined spino-bulbo-spinal loop. However, the windup of WDR nociceptive neurons was not regulated through this loop. In the present study, we sought to identify the alternative circuit activated by dorsal horn NK1Rs that mediates WDR neuron windup. As a model we used the rat spinal trigeminal nucleus, in which the subnucleus oralis (Sp5O) contains a pool of WDR neurons that receive their nociceptive C-input indirectly via interneurons located in the medullary dorsal horn (MDH). First, we found that intravenous injection of NK1R antagonists (SR140333 and RP67580) produced a reversible inhibition of Sp5O WDR neuron windup. Second, we anatomically identified in the MDH lamina III a subpopulation of NK1R-expressing local interneurons that relay nociceptive information from the MDH to downstream Sp5O neurons. Third, using microinjections of NK1R antagonists during in vivo electrophysiological recordings from Sp5O WDR neurons, we showed that WDR neuron windup depends on activation of NK1Rs located in the MDH laminae I-III. We conclude that, in contrast to central sensitization that is controlled by a spino-bulbo-spinal loop, Sp5O WDR neuron windup is regulated through a local circuit activated by MDH lamina III NK1Rs.

Wind-up is a progressive, frequency-dependent increase in the excitability of trigeminal and spinal dorsal horn wide dynamic range (WDR) nociceptive neurons evoked by repetitive stimulation of primary afferent nociceptive C-fibres. The correlate of wind-up in humans is temporal summation, which is an increase in pain perception to repetitive constant nociceptive stimulation. Although wind-up is widely used as a tool for studying the processing of nociceptive information, including central sensitization, its actual role is still unknown. Here, we recorded from trigeminal WDR neurons using in vivo electrophysiological techniques in rats and assessed the wind-up phenomenon in response to stimuli of different intensities and frequencies. First, we found that the amplitude of C-evoked responses of WDR neurons to repetitive stimulation increased progressively to reach a peak, then consistently showed a stable or slightly decreasing plateau phase. Only the first phase of this time course fitted in with the wind-up description. Therefore, to assess wind-up, we measured a limited number of initial responses. Second, we showed that wind-up, i.e. the slope of the frequency-dependent increase in the response to C-fibre stimulation, was linearly correlated to the stimulus intensity. Intensities of brief C-fibre inputs were thus coded into frequencies of action potentials by second-order neurons through frequency-dependent potentiation of the evoked responses. Third, wind-up also occurred at stimulation intensities below the threshold for C-evoked responses in WDR neurons, suggesting that wind-up can amplify subthreshold C-fibre inputs to WDR neurons. This might account for the observation that sparse, subliminal, neuronal activity in nociceptors can become painful via central integration of neural responses. Altogether, the present results show that wind-up can provide trigeminal WDR neurons with the capability to encode the intensity of short-duration orofacial nociceptive stimuli and to detect subthreshold nociceptive input. Thus, not only may wind-up play a physiological role in trigeminal sensory processing, but its enhancement may also underlie the pathophysiology of chronic orofacial pain conditions.

Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. During tactile allodynia, activation of the sensory fibers which normally detect touch elicits pain. Here we provide a new behavioral investigation into the dynamic component of tactile allodynia that developed in rats after segmental removal of glycine inhibition. Using in vivo electrophysiological recordings, we show that in this condition innocuous mechanical stimuli could activate superficial dorsal horn nociceptive specific neurons. These neurons do not normally respond to touch. We anatomically show that the activation was mediated through a local circuit involving neurons expressing the gamma isoform of protein kinase C (PKCgamma). Selective inhibition of PKCgamma as well as selective blockade of glutamate NMDA receptors in the superficial dorsal horn prevented both activation of the circuit and allodynia. Thus, our data demonstrates that a normally inactive circuit in the dorsal horn can be recruited to convert touch into pain. It also provides evidence that glycine inhibitory dysfunction gates tactile input to nociceptive specific neurons through PKCgamma-dependent activation of a local, excitatory, NMDA receptor-dependent, circuit. As a consequence of these findings, we suggest that pharmacological inhibition of PKCgamma might provide a new tool for alleviating allodynia in the clinical setting.

The aim of the current study was to adapt the orofacial formalin pain model previously developed in rats for use in mice and to characterize as fully as possible the behavioral changes in this species. The effects of subcutaneous injection of different formalin concentrations (.5%, 1%, 2%, 4%, and 8%) were examined on the face-rubbing response. In mice, formalin injection into the upper lip induced sustained face-rubbing episodes with vigorous face-wash strokes directed to the perinasal area. A positive linear relationship between formalin concentration and amplitude of the rubbing activity was observed during the first and second phase of the test with concentration up to 4%. With the highest concentration used (8%), the amplitude of both phases had plateaued. Systemic administration of morphine and paracetamol induced a dose-dependent inhibition of the rubbing behavior during the second phase. Although both paracetamol and morphine inhibited the first phase, a dose-dependent inhibition was found only for morphine. The ED50 value (95% confidence interval) for suppressing the rubbing response during the first phase was 2.45 mg/kg (1.90-3.08 mg/kg) for morphine. The ED50 values for suppressing the rubbing response during the second phase were 3.52 mg/kg (2.85-4.63 mg/kg) for morphine and 100.66 mg/kg (77.98-139.05 mg/kg) for paracetamol. Heterosegmental nociceptive stimulation evoked by subcutaneous injection of capsaicin into the back of the animal 10 min before the formalin test produced a dose-dependent inhibition of the second phase of the rubbing response. The ED50 values for suppressing the rubbing response during the first and second phases were 9.04 microg (1.36-65.13 microg) and 0.92 microg (0.28-2.99 microg), respectively. In conclusion, the mouse orofacial formalin test appears to be a reliable model for studying the behavioral encoding of the intensity of nociceptive orofacial stimulation and the counter-irritation phenomenon and for testing analgesic drugs. PERSPECTIVE: To further exploit the new opportunities of investigating nociceptive processing at the molecular level with the transgenic 'knockout' approach, we require suitable behavioral models in mice. The presented mouse orofacial formalin test appears to be a reliable model for studying the behavioral encoding of the intensity of nociceptive stimulation and the counter-irritation phenomenon and for testing analgesic drugs.


In the thalamus, noradrenergic output from the pontine nucleus locus coeruleus (LC) may actively shape the response properties of various sensory networks en route to the cortex. Little is known, however, about the involvement of ascending noradrenergic innervation of the somatosensory thalamus in the processing of nociceptive information. To address this question, we combined the study of Fos expression upon nociceptive tooth pulp stimulation in the anaesthetized rat, with the detection of retrogradely traced neurones from the somatosensory thalamus. Cell bodies labelled retrogradely from the left thalamus were observed on both sides of the LC, with an ipsilateral predominance (n = 8). Electrical stimulation of the right incisor pulp (n = 4) provoked a significantly stronger Fos expression (around twice) than sham surgery (n = 4), in both the ipsi- and contralateral LC. Significantly larger numbers of double labelled neurones were counted in the LC of tooth-pulp-stimulated animals (representing around 30% of retrogradely labelled cells in LC) than in the LC of sham animals. They were found bilaterally, but with a clear, significant, ipsilateral (i.e. left) predominance. The present data offer an anatomical framework to understand how the LC is involved in the sensory processing of nociceptive information in the thalamus. For the first time, it is shown that nociceptive stimulation activates LC neurones projecting to the somatosensory thalamus. This suggests a new role for LC in modulating nociception within the thalamus.

Recent evidence has been accumulated that not only spinal trigeminal nucleus caudalis (Sp5C) neurons but also spinal trigeminal nucleus oralis (Sp5O) neurons respond to noxious stimuli. It is unknown, however, whether Sp5O neurons project to supratrigeminal structures implicated in the sensory processing of orofacial nociceptive information. This study used retrograde tracing with Fluorogold in rats to investigate and compare the projections from the Sp5O and Sp5C to two major thalamic nuclei that relay ascending somatosensory information to the primary somatic sensory cortex: the ventroposteromedial thalamic nucleus (VPM) and the posterior thalamic nuclear group (Po). Results not only confirmed the existence of contralateral projections from the Sp5C to the VPM and Po, with retrogradely labelled neurons displaying a specific distribution in laminae I, III and V, they also showed consistent and similar numbers of retrogradely labelled cell bodies in the contralateral Sp5O. In addition, a topographic distribution of VPM projections from Sp5C and Sp5O was found: neurons in the dorsomedial parts of Sp5O and Sp5C projected to the medial VPM, neurons in the ventrolateral Sp5O and Sp5C projected to the lateral VPM, and neurons in intermediate parts of Sp5O and Sp5C projected to the intermediate VPM. All together, these data suggest that not only the Sp5C, but also the Sp5O relay somatosensory orofacial information from the brainstem to the thalamus. Furthermore, trigemino-VPM pathways conserve the somatotopic distribution of primary afferents found in each subnucleus. These results thus improve our understanding of trigeminal somatosensory processing and help to direct future electrophysiological investigations.

04/2004 | Eur J Neurosci
Bidirectional modulation of windup by NMDA receptors in the rat spinal trigeminal nucleus.
Woda A, Blanc O, Voisin DL, Coste J, Molat JL, Luccarini P

Activation of afferent nociceptive pathways is subject to activity-dependent plasticity, which may manifest as windup, a progressive increase in the response of dorsal horn nociceptive neurons to repeated stimuli. At the cellular level, N-methyl-d-aspartate (NMDA) receptor activation by glutamate released from nociceptive C-afferent terminals is currently thought to generate windup. Most of the wide dynamic range nociceptive neurons that display windup, however, do not receive direct C-fibre input. It is thus unknown where the NMDA mechanisms for windup operate. Here, using the Sprague-Dawley rat trigeminal system as a model, we anatomically identify a subpopulation of interneurons that relay nociceptive information from the superficial dorsal horn where C-fibres terminate, to downstream wide dynamic range nociceptive neurons. Using in vivo electrophysiological recordings, we show that at the end of this pathway, windup was reduced (24 +/- 6%, n = 7) by the NMDA receptor antagonist AP-5 (2.0 fmol) and enhanced (62 +/- 19%, n = 12) by NMDA (1 nmol). In contrast, microinjections of AP-5 (1.0 fmol) within the superficial laminae increased windup (83 +/- 44%, n = 9), whereas NMDA dose dependently decreased windup (n = 19). These results indicate that NMDA receptor function at the segmental level depends on their precise location in nociceptive neural networks. While some NMDA receptors actually amplify pain information, the new evidence for NMDA dependent inhibition of windup we show here indicates that, simultaneously, others act in the opposite direction. Working together, the two mechanisms may provide a fine tuning of gain in pain.

05/2003 | Med Sci (Paris)
[Neurobiology of trigeminal pain].
Dallel R, Villanueva L, Woda A, Voisin D

The brainstem trigeminal complex integrates somatosensory inputs from orofacial areas and meninges. Recent studies have shown the existence of a double representation of pain within the brainstem, at the level of both caudalis and oralis subnuclei. Noxious messages are mainly conveyed by C-fibers that activate the subnucleus caudalis neurons. These neurons in turn activate the subnucleus oralis whose neurons share similar features with the deep spinal dorsal horn neurons. In contrast with the nearness of the laminar organization of the dorsal horn, the vertical organization of the trigeminal complex offers an easier access for the study of segmental mechanisms of nociceptive processing. This model allowed us to show the existence of subtle NMDA-related mechanisms of segmental nocious processing. The trigeminal complex conveys nociceptive messages to several brainstem and thalamic relays that activate a number of cortical areas responsible for pain sensations and reactions. Cortical processing is sustained by reciprocal interactions with thalamic areas and also by a direct modulation of their pre-thalamic relays. The dysfunction of these multiple modulatory mechanisms probably plays a key role in the pathophysiology of chronic trigeminal pain.