Page personnelle

Stéphane OLIET





Phone : 33(0)5 57 57 37 37
Send an email


Cursus:
PhD, McGill University (1994)
Posdoc, UCSF (1994-1997) HFSP fellow
CR1 CNRS, Inserm U378(2001)
HDR, Université Bordeaux 2 (2003)
DR1 CNRS, Neurocentre Magendie Inserm (2009)

Expertise: Astrocyte, gliotransmitters, plasticity, synapse, NMDA receptors





92 publication(s) since Juillet 1991:


Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in


06/06/2018 | Neuron   IF 14.3
Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory.
Robin LM*, Cruz J*, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent M, Busquets-Garcia A, Bellocchio L, Soria-Gomez E, Papouin T, Varilh M, Sherwood MW, Belluomo I, Balcells G, Matias I, Bosier B, Drago F, Van Eeckhaut A, Smolders I, Georges F, Araque A, Panatier A, Oliet SHR*, Marsicano G*

Abstract:
Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1 receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1 receptors increased intracellular astroglial Ca(2+) levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.




02/03/2018 | Sci Rep   IF 4.1
Metabolic Reprogramming in Amyotrophic Lateral Sclerosis.
Szelechowski M, Amoedo N, Obre E, Leger C, Allard L, Bonneu M, Claverol S, Lacombe D, Oliet S, Chevallier S, Le Masson G, Rossignol R

Abstract:
Mitochondrial dysfunction in the spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the neurometabolic alterations during early stages of the disease remain unknown. Here, we investigated the bioenergetic and proteomic changes in ALS mouse motor neurons and patients' skin fibroblasts. We first observed that SODG93A mice presymptomatic motor neurons display alterations in the coupling efficiency of oxidative phosphorylation, along with fragmentation of the mitochondrial network. The proteome of presymptomatic ALS mice motor neurons also revealed a peculiar metabolic signature with upregulation of most energy-transducing enzymes, including the fatty acid oxidation (FAO) and the ketogenic components HADHA and ACAT2, respectively. Accordingly, FAO inhibition altered cell viability specifically in ALS mice motor neurons, while uncoupling protein 2 (UCP2) inhibition recovered cellular ATP levels and mitochondrial network morphology. These findings suggest a novel hypothesis of ALS bioenergetics linking FAO and UCP2. Lastly, we provide a unique set of data comparing the molecular alterations found in human ALS patients' skin fibroblasts and SODG93A mouse motor neurons, revealing conserved changes in protein translation, folding and assembly, tRNA aminoacylation and cell adhesion processes.




30/01/2018 | Neuroimage   IF 5.4
Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: Applications to experimental multiple sclerosis.
Crombe A, Planche V, Raffard G, Bourel J, Dubourdieu N, Panatier A, Fukutomi H, Dousset V, Oliet S, Hiba B, Tourdias T

Abstract:
The hippocampus contains distinct populations of neurons organized into separate anatomical subfields and layers with differential vulnerability to pathological mechanisms. The ability of in vivo neuroimaging to pinpoint regional vulnerability is especially important for better understanding of hippocampal pathology at the early stage of neurodegenerative disorders and for monitoring future therapeutic strategies. This is the case for instance in multiple sclerosis whose neurodegenerative component can affect the hippocampus from the early stage. We challenged the capacity of two models, i.e. the classical diffusion tensor imaging (DTI) model and the neurite orientation dispersion and density imaging (NODDI) model, to compute quantitative diffusion MRI that could capture microstructural alterations in the individual hippocampal layers of experimental-autoimmune encephalomyelitis (EAE) mice, the animal model of multiple sclerosis. To achieve this, the hippocampal anatomy of a healthy mouse brain was first explored ex vivo with high resolution DTI and NODDI. Then, 18 EAE mice and 18 control mice were explored 20 days after immunization with in vivo diffusion MRI prior to sacrifice for the histological quantification of neurites and glial markers in each hippocampal layer. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) maps were computed from the DTI model while the orientation dispersion index (ODI), the neurite density index (NDI) and the volume fraction of isotropic diffusivity (isoVF) maps were computed from the NODDI model. We first showed in control mice that color-coded FA and ODI maps can delineate three main hippocampal layers. The quantification of FA, AD, RD, MD, ODI, NDI and isoVF presented differences within these 3 layers, especially within the molecular layer of the dentate gyrus which displayed a specific signature based on a combination of AD (or MD), ODI and NDI. Then, the comparison between EAE and control mice showed a decrease of AD (p=0.036) and of MD (p=0.033) selectively within the molecular layer of EAE mice while NODDI indices did not present any difference between EAE and control mice in any layer. Histological analyses confirmed the differential vulnerability of the molecular layer of EAE mice that exhibited decreased dendritic length and decreased dendritic complexity together with activated microglia. Dendritic length and intersections within the molecular layer were independent contributors to the observed decrease of AD (R(2)=0.37 and R(2)=0.40, p<0.0001) and MD (R(2)=0.41 and R(2)=0.42, p<0.0001). We therefore identified that NODDI maps can help to highlight the internal microanatomy of the hippocampus but NODDI still presents limitations in grey matter as it failed to capture selective dendritic alterations occurring at early stages of a neurodegenerative disease such as multiple sclerosis, whereas DTI maps were significantly altered.




11/2017 | Cell Calcium   IF 3.7
Dynamics of surface neurotransmitter receptors and transporters in glial cells: Single molecule insights.
Ciappelloni S, Murphy-Royal C, Dupuis JP, Oliet SHR, Groc L

Abstract:
The surface dynamics of neurotransmitter receptors and transporters, as well as ion channels, has been well-documented in neurons, revealing complex molecular behaviour and key physiological functions. However, our understanding of the membrane trafficking and dynamics of the signalling molecules located at the plasma membrane of glial cells is still in its infancy. Yet, recent breakthroughs in the field of glial cells have been obtained using combination of superresolution microscopy, single molecule imaging, and electrophysiological recordings. Here, we review our current knowledge on the surface dynamics of neurotransmitter receptors, transporters and ion channels, in glial cells. It has emerged that the brain cell network activity, synaptic activity, and calcium signalling, regulate the surface distribution and dynamics of these molecules. Remarkably, the dynamics of a given neurotransmitter receptor/transporter at the plasma membrane of a glial cell or neuron is unique, revealing the existence of cell-type specific regulatory pathways. Thus, investigating the dynamics of signalling proteins at the surface of glial cells will likely shed new light on our understanding of glial cell physiology and pathology.




12/06/2017 | Trends Neurosci   IF 11.4
Astroglial versus Neuronal D-Serine: Fact Checking.
Papouin T, Henneberger C, Rusakov DA, Oliet SHR

Abstract:
The activation of NMDA receptors (NMDARs) is conditioned by the binding of a co-agonist to a dedicated receptor binding site. It is now largely accepted that D-serine plays this role at many central synapses in the hippocampus, amygdala, hypothalamus, nucleus accumbens, and in prefrontal, visual, and somatosensory cortices. D-Serine has been found to be synthesized, stored, and released by astrocytes (Figure 1). However, several immunolabeling studies and experiments in genetically modified animals have recently led to a suggestion that neurons are primarily responsible for the synthesis and release of D-serine [1]. Here we argue that such conclusions could have resulted from the erroneous interpretation of experimental data and that they are at odds with a substantial amount of published work.




09/06/2017 | elife   IF 7.6
Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses.
Ferreira JS, Papouin T, Ladepeche L, Yao A, Langlais VC, Bouchet D, Dulong J, Mothet JP, Sacchi S, Pollegioni L, Paoletti P, Oliet SHR, Groc L

Abstract:
The subunit composition of synaptic NMDA receptors (NMDAR), such as the relative content of GluN2A- and GluN2B-containing receptors, greatly influences the glutamate synaptic transmission. Receptor co-agonists, glycine and D-serine, have intriguingly emerged as potential regulators of the receptor trafficking in addition to their requirement for its activation. Using a combination of single-molecule imaging, biochemistry and electrophysiology, we show that glycine and D-serine relative availability at rat hippocampal glutamatergic synapses regulate the trafficking and synaptic content of NMDAR subtypes. Acute manipulations of co-agonist levels, both ex vivo and in vitro, unveil that D-serine alter the membrane dynamics and content of GluN2B-NMDAR, but not GluN2A-NMDAR, at synapses through a process requiring PDZ binding scaffold partners. In addition, using FRET-based FLIM approach, we demonstrate that D-serine rapidly induces a conformational change of the GluN1 subunit intracellular C-terminus domain. Together our data fuels the view that the extracellular microenvironment regulates synaptic NMDAR signaling.




03/2017 | Glia   IF 5.8
Astrocytic IP3 Rs: Contribution to Ca2+ signalling and hippocampal LTP.
Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, Sherwood JL, Panatier A, Oliet SH, Mikoshiba K

Abstract:
Astrocytes regulate hippocampal synaptic plasticity by the Ca2+ dependent release of the N-methyl d-aspartate receptor (NMDAR) co-agonist d-serine. Previous evidence indicated that d-serine release would be regulated by the intracellular Ca2+ release channel IP3 receptor (IP3 R), however, genetic deletion of IP3 R2, the putative astrocytic IP3 R subtype, had no impact on synaptic plasticity or transmission. Although IP3 R2 is widely believed to be the only functional IP3 R in astrocytes, three IP3 R subtypes (1, 2, and 3) have been identified in vertebrates. Therefore, to better understand gliotransmission, we investigated the functionality of IP3 R and the contribution of the three IP3 R subtypes to Ca2+ signalling. As a proxy for gliotransmission, we found that long-term potentiation (LTP) was impaired by dialyzing astrocytes with the broad IP3 R blocker heparin, and rescued by exogenous d-serine, indicating that astrocytic IP3 Rs regulate d-serine release. To explore which IP3 R subtypes are functional in astrocytes, we used pharmacology and two-photon Ca2+ imaging of hippocampal slices from transgenic mice (IP3 R2-/- and IP3 R2-/- ;3-/- ). This approach revealed that underneath IP3 R2-mediated global Ca2+ events are an overlooked class of IP3 R-mediated local events, occurring in astroglial processes. Notably, multiple IP3 Rs were recruited by high frequency stimulation of the Schaffer collaterals, a classical LTP induction protocol. Together, these findings show the dependence of LTP and gliotransmission on Ca2+ release by astrocytic IP3 Rs. GLIA 2017;65:502-513.




02/02/2017 | J Neurosci Res   IF 2.7
Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission.
Murphy-Royal C, Dupuis J, Groc L, Oliet SH

Abstract:
Astrocytes, the major glial cell type in the central nervous system (CNS), are critical for brain function and have been implicated in various disorders of the central nervous system. These cells are involved in a wide range of cerebral processes including brain metabolism, control of central blood flow, ionic homeostasis, fine-tuning synaptic transmission, and neurotransmitter clearance. Such varied roles can be efficiently carried out due to the intimate interactions astrocytes maintain with neurons, the vasculature, as well as with other glial cells. Arguably, one of the most important functions of astrocytes in the brain is their control of neurotransmitter clearance. This is particularly true for glutamate whose timecourse in the synaptic cleft needs to be controlled tightly under physiological conditions to maintain point-to-point excitatory transmission, thereby limiting spillover and activation of more receptors. Most importantly, accumulation of glutamate in the extracellular space can trigger excessive activation of glutamatergic receptors and lead to excitotoxicity, a trademark of many neurodegenerative diseases. It is thus of utmost importance for both physiological and pathophysiological reasons to understand the processes that control glutamate time course within the synaptic cleft and regulate its concentrations in the extracellular space. (c) 2017 Wiley Periodicals, Inc.




22/11/2016 | Cereb Cortex   IF 6.3
Activity-Dependent Neuroplasticity Induced by an Enriched Environment Reverses Cognitive Deficits in Scribble Deficient Mouse.
Hilal ML, Moreau MM, Racca C, Pinheiro VL, Piguel NH, Santoni MJ, Dos Santos Carvalho S, Blanc JM, Abada YK, Peyroutou R, Medina C, Doat H, Papouin T, Vuillard L, Borg JP, Rachel R, Panatier A, Montcouquiol M, Oliet SHR, Sans N

Abstract:
Planar cell polarity (PCP) signaling is well known to play a critical role during prenatal brain development; whether it plays specific roles at postnatal stages remains rather unknown. Here, we investigated the role of a key PCP-associated gene scrib in CA1 hippocampal structure and function at postnatal stages. We found that Scrib is required for learning and memory consolidation in the Morris water maze as well as synaptic maturation and NMDAR-dependent bidirectional plasticity. Furthermore, we unveiled a direct molecular interaction between Scrib and PP1/PP2A phosphatases whose levels were decreased in postsynaptic density of conditional knock-out mice. Remarkably, exposure to enriched environment (EE) preserved memory formation in CaMK-Scrib-/- mice by recovering synaptic plasticity and maturation. Thus, Scrib is required for synaptic function involved in memory formation and EE has beneficiary therapeutic effects. Our results demonstrate a distinct new role for a PCP-associated protein, beyond embryonic development, in cognitive functions during adulthood.




12/11/2016 | Brain Behav Immun   IF 6.3
Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis.
Planche V, Panatier A, Hiba B, Ducourneau EG, Raffard G, Dubourdieu N, Maitre M, Leste-Lasserre T, Brochet B, Dousset V, Desmedt A, Oliet SH, Tourdias T

Abstract:
Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis.