Page personnelle

Philippe CIOFI




Principal Investigator

Phone : 33(0)5 57 57 37 38 / 33(0)5 57 57 36 00
Send an email



Cursus:
1984-87: PhD Univ. Lille (France), Neuroanatomy - Neuroendocrinology
1987-90: Post-Doc, Univ. Calif. Irvine, Neuroanatomy - Neuroendocrinology
1991- :Inserm Investigator, Neuroanatomy - Neuroendocrinology






72 publication(s) since Décembre 1985:


Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in


2013 | PLoS ONE   IF 3.7
Substance p immunoreactivity exhibits frequent colocalization with kisspeptin and neurokinin B in the human infundibular region.
Hrabovszky E, Borsay BA, Racz K, Herczeg L, Ciofi P, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z

Abstract:
Neurons synthesizing neurokinin B (NKB) and kisspeptin (KP) in the hypothalamic arcuate nucleus represent important upstream regulators of pulsatile gonadotropin-releasing hormone (GnRH) neurosecretion. In search of neuropeptides co-expressed in analogous neurons of the human infundibular nucleus (Inf), we have carried out immunohistochemical studies of the tachykinin peptide Substance P (SP) in autopsy samples from men (21-78 years) and postmenopausal (53-83 years) women. Significantly higher numbers of SP-immunoreactive (IR) neurons and darker labeling were observed in the Inf of postmenopausal women than in age-matched men. Triple-immunofluorescent studies localized SP immunoreactivity to considerable subsets of KP-IR and NKB-IR axons and perikarya in the infundibular region. In postmenopausal women, 25.1% of NKB-IR and 30.6% of KP-IR perikarya contained SP and 16.5% of all immunolabeled cell bodies were triple-labeled. Triple-, double- and single-labeled SP-IR axons innervated densely the portal capillaries of the infundibular stalk. In quadruple-labeled sections, these axons formed occasional contacts with GnRH-IR axons. Presence of SP in NKB and KP neurons increases the functional complexity of the putative pulse generator network. First, it is possible that SP modulates the effects of KP and NKB in axo-somatic and axo-dendritic afferents to GnRH neurons. Intrinsic SP may also affect the activity and/or neuropeptide release of NKB and KP neurons via autocrine/paracrine actions. In the infundibular stalk, SP may influence the KP and NKB secretory output via additional autocrine/paracrine mechanisms or regulate GnRH neurosecretion directly. Finally, possible co-release of SP with KP and NKB into the portal circulation could underlie further actions on adenohypophysial gonadotrophs.




11/2012 | Endocrinology   IF 4.5
Morphological evidence for enhanced kisspeptin and neurokinin B signaling in the infundibular nucleus of the aging man.
Molnar CS, Vida B, Sipos MT, Ciofi P, Borsay BA, Racz K, Herczeg L, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Hrabovszky E

Abstract:
Peptidergic neurons synthesizing kisspeptin (KP) and neurokinin B (NKB) in the hypothalamic infundibular nucleus have been implicated in negative sex steroid feedback to GnRH neurons. In laboratory rodents, testosterone decreases KP and NKB expression in this region. In the present study, we addressed the hypothesis that the weakening of this inhibitory testosterone feedback in elderly men coincides with enhanced KP and NKB signaling in the infundibular nucleus. This central hypothesis was tested in a series of immunohistochemical studies on hypothalamic sections of male human individuals that were divided into arbitrary 'young' (21-49 yr, n = 11) and 'aged' (50-67 yr, n = 9) groups. Quantitative immunohistochemical experiments established that the regional densities of NKB-immunoreactive (IR) perikarya and fibers, and the incidence of afferent contacts they formed onto GnRH neurons, exceeded several times those of the KP-IR elements. Robust aging-dependent enhancements were identified in the regional densities of KP-IR perikarya and fibers and the incidence of afferent contacts they established onto GnRH neurons. The abundance of NKB-IR perikarya, fibers, and axonal appositions to GnRH neurons also increased with age, albeit to lower extents. In dual-immunofluorescent studies, the incidence of KP-IR NKB perikarya increased from 36% in young to 68% in aged men. Collectively, these immunohistochemical data suggest an aging-related robust enhancement in central KP signaling and a moderate enhancement in central NKB signaling. These changes are compatible with a reduced testosterone negative feedback to KP and NKB neurons. The heavier KP and NKB inputs to GnRH neurons in aged, compared with young, men may play a role in the enhanced central stimulation of the reproductive axis. It requires clarification to what extent the enhanced KP and NKB signaling upstream from GnRH neurons is an adaptive response to hypogonadism or, alternatively, a consequence of a decline in the androgen sensitivity of KP and NKB neurons.




10/2012 | Endocrinology   IF 4.5
Low Degree of Overlap Between Kisspeptin, Neurokinin B, and Dynorphin Immunoreactivities in the Infundibular Nucleus of Young Male Human Subjects Challenges the KNDy Neuron Concept.
Hrabovszky E, Sipos MT, Molnar CS, Ciofi P, Borsay BA, Gergely P, Herczeg L, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z

Abstract:
Previous immunohistochemical and in situ hybridization studies of sheep, goats, and rodents indicated that kisspeptin (KP), neurokinin B (NKB), and dynorphin A (DYN) are extensively colocalized in the hypothalamic arcuate nucleus, thus providing a basis for the KP/NKB/DYN (KNDy) neuron concept; in both sexes, KNDy neuropeptides have been implicated in the generation of GnRH neurosecretory pulses and in the negative feedback effects of sexual steroids to the reproductive axis. To test the validity and limitations of the KNDy neuron concept in the human, we carried out the comparative immunohistochemical analysis of the three neuropeptides in the infundibular nucleus (Inf; also known as arcuate nucleus) and stalk of young male human individuals (<37 yr). Results of quantitative immunohistochemical experiments established that the regional densities of NKB immunoreactive (IR) perikarya and fibers, and the incidence of afferent contacts they formed onto GnRH neurons, were about 5 times as high as those of the KP-IR elements. Dual-immunofluorescent studies confirmed that considerable subsets of the NKB-IR and KP-IR cell bodies and fibers are separate, and only about 33% of NKB-IR perikarya and 75% of KP-IR perikarya were dual labeled. Furthermore, very few DYN-IR cell bodies could be visualized in the Inf. DYN-IR fibers were also rare and, with few exceptions, distinct from the KP-IR fibers. The abundance and colocalization patterns of the three immunoreactivities showed similar trends in the infundibular stalk around portal blood vessels. Together these results indicate that most NKB neurons in the Inf do not synthesize detectable amounts of KP and DYN in young male human individuals. These data call for a critical use of the KNDy neuron terminology when referring to the putative pulse generator system of the mediobasal hypothalamus. We conclude that the functional importance of these three neuropeptides in reproductive regulation considerably varies among species, between sexes, and at different ages.




Abstract:
It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.




20/07/2012 | Endocrinology   IF 4.5
Neurokinin B and the Control of the Gonadotropic Axis in the Rat: Developmental Changes, Sexual Dimorphism, and Regulation by Gonadal Steroids.
Ruiz-Pino F, Navarro VM, Bentsen AH, Garcia-Galiano D, Sanchez-Garrido MA, Ciofi P, Steiner RA, Mikkelsen JD, Pinilla L, Tena-Sempere M

Abstract:
Neurokinin B (NKB), encoded by Tac2 in rodents, and its receptor, NK3R, have recently emerged as important regulators of reproduction; NKB has been proposed to stimulate kisspeptin output onto GnRH neurons. Accordingly, NKB has been shown to induce gonadotropin release in several species; yet, null or even inhibitory effects of NKB have been also reported. The basis for these discrepant findings, as well as other key aspects of NKB function, remains unknown. We report here that in the rat, LH responses to the NK3R agonist, senktide, display a salient sexual dimorphism, with persistent stimulation in females, regardless of the stage of postnatal development, and lack of LH responses in males from puberty onward. Such dimorphism was independent of the predominant sex steroid after puberty, because testosterone administration to adult females failed to prevent LH responses to senktide, and LH responsiveness was not restored in adult males treated with estradiol or the nonaromatizable androgen, dihydrotestosterone. Yet, removal of sex steroids by gonadectomy switched senktide effects to inhibitory, both in adult male and female rats. Sexual dimorphism was also evident in the numbers of NKB-positive neurons in the arcuate nucleus (ARC), which were higher in adult female rats. This is likely the result of differences in sex steroid milieu during early periods of brain differentiation, because neonatal exposures to high doses of estrogen decreased ARC NKB neurons at later developmental stages. Likewise, neonatal estrogenization resulted in lower serum LH levels that were normalized by senktide administration. Finally, we document that the ability of estrogen to inhibit hypothalamic Tac2 expression seems region specific, because estrogen administration decreased Tac2 levels in the ARC but increased them in the lateral hypothalamus. Altogether, our data provide a deeper insight into relevant aspects of NKB function as major regulator of the gonadotropic axis in the rat, including maturational changes, sexual dimorphism, and differential regulation by sex steroids.




06/2012 | Endocrinology   IF 4.5
Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight.
Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, Lai J, Ciofi P, McMullen NT, Rance NE

Abstract:
Estrogen withdrawal increases gonadotropin secretion and body weight, but the critical cell populations mediating these effects are not well understood. Recent studies have focused on a subpopulation of hypothalamic arcuate neurons that coexpress estrogen receptor alpha, neurokinin 3 receptor (NK(3)R), kisspeptin, neurokinin B, and dynorphin for the regulation of reproduction. To investigate the function of kisspeptin/neurokinin B/dynorphin (KNDy) neurons, a novel method was developed to ablate these cells using a selective NK(3)R agonist conjugated to the ribosome-inactivating toxin, saporin (NK(3)-SAP). Stereotaxic injections of NK(3)-SAP in the arcuate nucleus ablated KNDy neurons, as demonstrated by the near-complete loss of NK(3)R, NKB, and kisspeptin-immunoreactive (ir) neurons and depletion of the majority of arcuate dynorphin-ir neurons. Selectivity was demonstrated by the preservation of proopiomelanocortin, neuropeptide Y, and GnRH-ir elements in the arcuate nucleus and median eminence. In control rats, ovariectomy (OVX) markedly increased serum LH, FSH, and body weight, and these parameters were subsequently decreased by treatment with 17beta-estradiol. KNDy neuron ablation prevented the rise in serum LH after OVX and attenuated the rise in serum FSH. KNDy neuron ablation did not completely block the suppressive effects of E(2) on gonadotropin secretion, a finding consistent with redundant pathways for estrogen negative feedback. However, regardless of estrogen status, KNDy-ablated rats had lower levels of serum gonadotropins compared with controls. Surprisingly, KNDy neuron ablation prevented the dramatic effects of OVX and 17beta-estradiol (E(2)) replacement on body weight and abdominal girth. These data provide evidence that arcuate KNDy neurons are essential for tonic gonadotropin secretion, the rise in LH after removal of E(2), and the E(2) modulation of body weight.




03/2012 | Hippocampus   IF 5.2
Glutamate decarboxylase 67 is expressed in hippocampal mossy fibers of temporal lobe epilepsy patients.
Sperk G, Wieselthaler-Holzl A, Pirker S, Tasan R, Strasser SS, Drexel M, Pifl C, Marschalek J, Ortler M, Trinka E, Heitmair-Wietzorrek K, Ciofi P, Feucht M, Baumgartner C, Czech T

Abstract:
Recently, expression of glutamate decarboxylase-67 (GAD67), a key enzyme of GABA synthesis, was detected in the otherwise glutamatergic mossy fibers of the rat hippocampus. Synthesis of the enzyme was markedly enhanced after experimentally induced status epilepticus. Here, we investigated the expression of GAD67 protein and mRNA in 44 hippocampal specimens from patients with mesial temporal lobe epilepsy (TLE) using double immunofluorescence histochemistry, immunoblotting, and in situ hybridization. Both in specimens with (n = 37) and without (n = 7) hippocampal sclerosis, GAD67 was highly coexpressed with dynorphin in terminal areas of mossy fibers, including the dentate hilus and the stratum lucidum of sector CA3. In the cases with Ammon's horn sclerosis, also the inner molecular layer of the dentate gyrus contained strong staining for GAD67 immunoreactivity, indicating labeling of mossy fiber terminals that specifically sprout into this area. Double immunofluorescence revealed the colocalization of GAD67 immunoreactivity with the mossy fiber marker dynorphin. The extent of colabeling correlated with the number of seizures experienced by the patients. Furthermore, GAD67 mRNA was found in granule cells of the dentate gyrus. Levels, both of GAD67 mRNA and of GAD67 immunoreactivity were similar in sclerotic and nonsclerotic specimens and appeared to be increased compared to post mortem controls. Provided that the strong expression of GAD67 results in synthesis of GABA in hippocampal mossy fibers this may represent a self-protecting mechanism in TLE. In addition GAD67 expression also may result in conversion of excessive intracellular glutamate to nontoxic GABA within mossy fiber terminals.




03/2012 | J Neuroendocrinol   IF 3.1
Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones.
Kallo I, Vida B, Deli L, Molnar CS, Hrabovszky E, Caraty A, Ciofi P, Coen CW, Liposits Z

Abstract:
The gonadotrophin-releasing hormone (GnRH) secreting neurones, which form the final common pathway for the central regulation of reproduction, are directly targeted by kisspeptin (KP) via the G protein-coupled receptor, GPR54. In these multiple labelling studies, we used ovariectomised mice treated with 17beta-oestradiol (OVX + E(2)) or vehicle (OVX + oil) to determine: (i) the ultrastructural characteristics of KP-immunoreactive (IR) afferents to GnRH neurones; (ii) their galanin or neurokinin B (NKB) content; and (iii) the co-expression of galanin or NKB with KP in the two major subpopulations of KP neurones located in the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (Arc). Electron microscopic investigation of the neuronal juxtapositions revealed axosomatic and axodendritic synapses; these showed symmetrical or asymmetrical characteristics, suggesting a phenotypic diversity of KP afferents. Heterogeneity of afferents was also demonstrated by differential co-expression of neuropeptides; in OVX + E(2) mice, KP afferents to GnRH neurones showed galanin-immunoreactivity with an incidence of 22.50 +/- 2.41% and NKB-immunoreactivity with an incidence of 5.61 +/- 2.57%. In OVX + oil animals, galanin-immunoreactivity in the KP afferents showed a major reduction, appearing in only 5.78 +/- 1.57%. Analysis for co-localisation of galanin or NKB with KP was extended to the perikaryal level in animal models, which showed the highest KP incidence; these were OVX + E(2) females for the RP3V and OVX + oil females for the ARC. In the RP3V of colchicine-treated OVX + E(2) animals, 87.84 +/- 2.65% of KP-IR neurones were galanin positive. In the Arc of the colchicine-treated OVX + oil animals, galanin immunoreactivity was detected in only 12.50 +/- 1.92% of the KP expressing neurones. By contrast, the incidence of co-localisation with NKB in the Arc of those animals was 98.09 +/- 1.30%. In situ hybridisation histochemistry of sections from OVX + E(2) animals identified galanin message in more than a third of the KP neurones in the RP3V (38.67 +/- 11.57%) and in the Arc (42.50 +/- 12.52%). These data suggest that GnRH neurones are innervated by chemically heterogeneous KP cell populations, with a small proportion deriving from the Arc group. The presence of galanin within KP axons innervating GnRH neurones and the oestrogen-dependent regulation of that presence add a new dimension to the roles played by galanin in the central regulation of reproduction.




01/12/2011 | J Comp Neurol   IF 3.8
Kisspeptin neurons co-express met-enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus.
Porteous R, Petersen SL, Yeo SH, Bhattarai JP, Ciofi P, de Tassigny XD, Colledge WH, Caraty A, Herbison AE

Abstract:
It is now well established that the kisspeptin neurons of the hypothalamus play a key role in regulating the activity of gonadotropin-releasing hormone (GnRH) neurons. The population of kisspeptin neurons residing in the rostral periventricular region of the third ventricle (RP3V), encompassing the anteroventral periventricular (AVPV) and periventricular preoptic nuclei (PVpo), are implicated in the generation of the preovulatory GnRH surge mechanism and puberty onset in female rodents. The present study examined whether these kisspeptin neurons may express other neuropeptides in the adult female mouse. Initially, the distribution of galanin, neurotensin, met-enkephalin (mENK), and cholecystokinin (CCK)-immunoreactive cells was determined within the RP3V of colchicine-treated mice. Subsequent experiments, using a new kisspeptin-10 antibody raised in sheep, examined the relationship of these neuropeptides to kisspeptin neurons. No evidence was found for expression of neurotensin or CCK by RP3V kisspeptin neurons, but subpopulations of kisspeptin neurons were observed to express galanin and mENK. Dual-labeled RP3V kisspeptin/galanin cells represented 7% of all kisspeptin and 21% of all galanin neurons whereas dual-labeled kisspeptin/mENK cells represented 28-38% of kisspeptin neurons and 58-68% of the mENK population, depending on location within the AVPV or PVpo. Kisspeptin neurons in the arcuate nucleus were also found to express galanin but not mENK. These observations indicate that, like the kisspeptin population of the arcuate nucleus, kisspeptin neurons in the RP3V also co-express a range of neuropeptides. This pattern of co-expression should greatly increase the dynamic range with which kisspeptin neurons can modulate the activity of their afferent neurons.




07/01/2011 | Neurosci Lett   IF 2.1
The arcuate nucleus as a circumventricular organ in the mouse.
Ciofi P

Abstract:
The present study searched for morphological correlates of the permeability of the ventromedial arcuate nucleus of the mouse to blood-borne proteins. First, we determined that highly permeable microvessels are detected in the ventromedial arcuate nucleus using a rat monoclonal antibody to a mouse-specific endothelial phenotype (clone MECA32) recently recognized as a marker of endothelial fenestral diaphragms and previously shown to label circumventricular organs. Second, in the mild conditions of tissue fixation mandatory for use of MECA32, we observed that after a rapid vascular flush with saline, endogenous immunoglobulins are especially retained in circumventricular organs and ventromedial arcuate nucleus. The ventromedial arcuate nucleus thus shares features in common with classical circumventricular organs.