Page personnelle

Jennifer STANIC

Post Doc

Phone : 33(0)5 57 57 37 59
Send an email

Master in Cell Biology, Physiology & Pathology (BCPP) in Neuroscience - Université Paris Descartes - Paris V, France (2010)
PhD in Pharmacological Sciences - Università degli Studi di Milano - Milan, Italy (jan. 2014)
Post-doctoral fellow - DiSFeB, Università degli Studi di Milano - Milan, Italy (2014-2016)
Idex Bordeaux Post-doctoral fellow, Neurocentre Magendie (2017-2018)
Marie Curie Post-doctoral fellow, Neurocentre Magendie (2018-2020)

Expertise: Neurobiology, Dendritic spines, Postsynaptic density, Microscopy, Cell Biology, Biochemistry

13 publication(s) since Mai 2012:

Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in

27/08/2019 | iscience
Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition.
Franchini L*, Stanic J*, Ponzini L, Mellone M, Carrano N, Musardo S, Zianni E, Olivero G, Marcello E, Pittaluga A, Sala M, Bellone C, Racca C, DiLuca M, Gardoni F

NMDA receptor (NMDAR) subunit composition plays a pivotal role in synaptic plasticity at excitatory synapses. Still, the mechanisms responsible for the synaptic retention of NMDARs following induction of plasticity need to be fully elucidated. Rabphilin3A (Rph3A) is involved in the stabilization of NMDARs at synapses through the formation of a complex with GluN2A and PSD-95. Here we used different protocols to induce synaptic plasticity in the presence or absence of agents modulating Rph3A function. The use of Forskolin/Rolipram/Picrotoxin cocktail to induce chemical LTP led to synaptic accumulation of Rph3A and formation of synaptic GluN2A/Rph3A complex. Notably, Rph3A silencing or use of peptides interfering with the GluN2A/Rph3A complex blocked LTP induction. Moreover, in vivo disruption of GluN2A/Rph3A complex led to a profound alteration of spatial memory. Overall, our results demonstrate a molecular mechanism needed for NMDAR stabilization at synapses after plasticity induction and to trigger downstream signaling events necessary for cognitive behavior.

24/09/2018 | Neurobiol Dis   IF 5.2
NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology.
Mellone M, Zianni E, Stanic J, Campanelli F, Marino G, Ghiglieri V, Longhi A, Thiolat ML, Li Q, Calabresi P, Bezard E, Picconi B, Di Luca M, Gardoni F

In the striatum, specific N-methyl-d-aspartate receptor (NMDAR) subtypes are found in different neuronal cells. Spiny projection neurons (SPNs) are characterized by NMDARs expressing GluN2A and GluN2B subunits, while GluN2D is exclusively detected in striatal cholinergic interneurons (ChIs). In Parkinson's disease (PD), dopamine depletion and prolonged treatment with levodopa (L-DOPA) trigger adaptive changes in the glutamatergic transmission from the cortex to the striatum, also resulting in the aberrant function of striatal NMDARs. While modifications of GluN2A- and GluN2B-NMDARs in SPNs have been extensively documented, only few studies reported GluN2D dysfunction in PD and no data are available in L-DOPA-induced dyskinesia (LID). Here we investigate the contribution of a specific NMDAR subtype (GluN2D-NMDAR) to PD and LID, and whether this receptor could represent a candidate for future pharmacological interventions. Our results show that GluN2D synaptic abundance is selectively augmented in the striatum of L-DOPA-treated male parkinsonian rats displaying a dyskinetic phenotype. This event is associated to a dramatic increase in GluN2D binding to the postsynaptic protein scaffold PSD-95. Moreover, immunohistochemistry and electrophysiology experiments reveal that GluN2D-NMDARs are expressed not only by striatal ChIs but also by SPNs in dyskinetic rats. Notably, in vivo treatment with a well-characterized GluN2D antagonist ameliorates the severity of established dyskinesia in L-DOPA-treated animals. Our findings support a role for GluN2D-NMDARs in LID, and they confirm that cell-type and subunit specific modifications of NMDARs underlie the pathophysiology of LID.

05/03/2018 | eLife   IF 7.6
Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum.
Maltese M, Stanic J, Tassone A, Sciamanna G, Ponterio G, Vanni V, Martella G, Imbriani P, Bonsi P, Mercuri NB, Gardoni F, Pisani A

The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, though it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a(+/Deltagag) DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a(+/Deltagag) neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a(+/Deltagag) mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers.

05/01/2018 | Sci Rep   IF 4.1
Publisher Correction: Anti-AMPA GluA3 antibodies in Frontotemporal dementia: a new molecular target.
Borroni B, Stanic J, Verpelli C, Mellone M, Bonomi E, Alberici A, Bernasconi P, Culotta L, Zianni E, Archetti S, Manes M, Gazzina S, Ghidoni R, Benussi L, Stuani C, Di Luca M, Sala C, Buratti E, Padovani A, Gardoni F

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

18/08/2017 | Neurobiol Dis   IF 5
Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias.
Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, De Rosa A, Picconi B, Bezard E, Calabresi P, Di Luca M, Usiello A, Gardoni F

N-methyl-d-aspartate receptor (NMDAR) subunit composition strictly commands receptor function and pharmacological responses. Changes in NMDAR subunit composition have been documented in brain disorders such as Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesias (LIDs), where an increase of NMDAR GluN2A/GluN2B subunit ratio at striatal synapses has been observed. A therapeutic approach aimed at rebalancing NMDAR synaptic composition represents a valuable strategy for PD and LIDs. To this, the comprehension of the molecular mechanisms regulating the synaptic localization of different NMDAR subtypes is required. We have recently demonstrated that Rabphilin 3A (Rph3A) is a new binding partner of NMDARs containing the GluN2A subunit and that it plays a crucial function in the synaptic stabilization of these receptors. Considering that protein-protein interactions govern the synaptic retention of NMDARs, the purpose of this work was to analyse the role of Rph3A and Rph3A/NMDAR complex in PD and LIDs, and to modulate Rph3A/GluN2A interaction to counteract the aberrant motor behaviour associated to chronic L-DOPA administration. Thus, an array of biochemical, immunohistochemical and pharmacological tools together with electron microscopy were applied in this study. Here we found that Rph3A is localized at the striatal postsynaptic density where it interacts with GluN2A. Notably, Rph3A expression at the synapse and its interaction with GluN2A-containing NMDARs were increased in parkinsonian rats displaying a dyskinetic profile. Acute treatment of dyskinetic animals with a cell-permeable peptide able to interfere with Rph3A/GluN2A binding significantly reduced their abnormal motor behaviour. Altogether, our findings indicate that Rph3A activity is linked to the aberrant synaptic localization of GluN2A-expressing NMDARs characterizing LIDs. Thus, we suggest that Rph3A/GluN2A complex could represent an innovative therapeutic target for those pathological conditions where NMDAR composition is significantly altered.

27/07/2017 | Sci Rep   IF 4.3
Anti-AMPA GluA3 antibodies in Frontotemporal dementia: a new molecular target.
Borroni B, Stanic J, Verpelli C, Mellone M, Bonomi E, Alberici A, Bernasconi P, Culotta L, Zianni E, Archetti S, Manes M, Gazzina S, Ghidoni R, Benussi L, Stuani C, Di Luca M, Sala C, Buratti E, Padovani A, Gardoni F

Frontotemporal Dementia (FTD) is a neurodegenerative disorder mainly characterised by Tau or TDP43 inclusions. A co-autoimmune aetiology has been hypothesised. In this study, we aimed at defining the pathogenetic role of anti-AMPA GluA3 antibodies in FTD. Serum and cerebrospinal fluid (CSF) anti-GluA3 antibody dosage was carried out and the effect of CSF with and without anti-GluA3 antibodies was tested in rat hippocampal neuronal primary cultures and in differentiated neurons from human induced pluripotent stem cells (hiPSCs). TDP43 and Tau expression in hiPSCs exposed to CSF was assayed. Forty-one out of 175 screened FTD sera were positive for the presence of anti-GluA3 antibodies (23.4%). FTD patients with anti-GluA3 antibodies more often presented presenile onset, behavioural variant FTD with bitemporal atrophy. Incubation of rat hippocampal neuronal primary cultures with CSF with anti-GluA3 antibodies led to a decrease of GluA3 subunit synaptic localization of the AMPA receptor (AMPAR) and loss of dendritic spines. These results were confirmed in differentiated neurons from hiPSCs, with a significant reduction of the GluA3 subunit in the postsynaptic fraction along with increased levels of neuronal Tau. In conclusion, autoimmune mechanism might represent a new potentially treatable target in FTD and might open new lights in the disease underpinnings.

01/10/2016 | J Comp Neurol   IF 3.3
Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: Establishment of a dual nuclear-cytoplasmic localization.
Massart R, Mignon V, Stanic J, Munoz-Tello P, Becker JA, Kieffer BL, Darmon M, Sokoloff P, Diaz J

GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. J. Comp. Neurol. 524:2776-2802, 2016. (c) 2016 Wiley Periodicals, Inc.

11/05/2016 | mol brain   IF 3.7
LRRK2 phosphorylation level correlates with abnormal motor behaviour in an experimental model of levodopa-induced dyskinesias.
Stanic J, Mellone M, Cirnaru MD, Perez-Carrion M, Zianni E, Di Luca M, Gardoni F, Piccoli G

Levodopa (L-DOPA)-induced dyskinesias (LIDs) represent the major side effect in Parkinson's disease (PD) therapy. Leucine-rich repeat kinase 2 (LRRK2) mutations account for up to 13 % of familial cases of PD. LRRK2 N-terminal domain encompasses several serine residues that undergo phosphorylation influencing LRRK2 function. This work aims at investigating whether LRRK2 phosphorylation/function may be involved in the molecular pathways downstream D1 dopamine receptor leading to LIDs. Here we show that LRRK2 phosphorylation level at serine 935 correlates with LIDs induction and that inhibition of LRRK2 induces a significant increase in the dyskinetic score in L-DOPA treated parkinsonian animals. Our findings support a close link between LRKK2 functional state and L-DOPA-induced abnormal motor behaviour and highlight that LRRK2 phosphorylation level may be implicated in LIDs, calling for novel therapeutic strategies.

15/03/2016 | eLife   IF 8.3
Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus.
Dinamarca MC, Guzzetti F, Karpova A, Lim D, Mitro N, Musardo S, Mellone M, Marcello E, Stanic J, Samaddar T, Burguiere A, Caldarelli A, Genazzani AA, Perroy J, Fagni L, Canonico PL, Kreutz MR, Gardoni F, Di Luca M

Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines.

02/2016 | Neurobiol Dis   IF 4.9
Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms.
Ghiglieri V, Mineo D, Vannelli A, Cacace F, Mancini M, Pendolino V, Napolitano F, di Maio A, Mellone M, Stanic J, Tronci E, Fidalgo C, Stancampiano R, Carta M, Calabresi P, Gardoni F, Usiello A, Picconi B

L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LIDs) represent the main side effect of Parkinson's Disease (PD) therapy. Among the various pharmacological targets for novel therapeutic approaches, the serotonergic system represents a promising one. In experimental models of PD and in PD patients the development of abnormal involuntary movements (AIMs) and LIDs, respectively, is accompanied by the impairment of bidirectional synaptic plasticity in key structures such as striatum. Recently, it has been shown that the 5-HT1A/1B receptor agonist, eltoprazine, significantly decreased LIDs in experimental PD and human patients. Despite the fact that several papers have tested this and other serotonergic drugs, nothing is known about the electrophysiological consequences on this combined serotonin receptors modulation at striatal neurons. The present study demonstrates that activation of 5-HT1A/1B receptors reduces AIMs via the restoration of Long-Term Potentiation (LTP) and synaptic depotentiation in a sub-set of striatal spiny projection neurons (SPNs). This recovery is associated with the normalization of D1 receptor-dependent cAMP/PKA and ERK/mTORC signaling pathways, and the recovery of NMDA receptor subunits balance, indicating these events as key elements in AIMs induction. Moreover, we analyzed whether the manipulation of the serotonergic system might affect motor behavior and cognitive performances. We found that a defect in locomotor activity in parkinsonian and L-DOPA-treated rats was reversed by eltoprazine treatment. Conversely, the impairment in the striatal-dependent learning was found exacerbated in L-DOPA-treated rats and eltoprazine failed to recover it.