Page personnelle

Urszula SKUPIO

5 publication(s) since Février 2015:

Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in

26/07/2019 | Br J Pharmacol   IF 6.6
Functional characterization of a novel opioid, PZM21, and its influence on behavioural responses to morphine.
Kudla L, Bugno R, Skupio U, Wiktorowska L, Solecki W, Wojtas A, Golembiowska K, Zador F, Benyhe S, Buda S, Makuch W, Przewlocka B, Bojarski AJ, Przewlocki R

BACKGROUND AND PURPOSE: The concept of opioid ligands biased toward the G protein pathway with minimal recruitment of beta-arrestin-2 has become a promising approach for the development of novel, efficient and potentially nonaddictive opioid therapeutics. A recently discovered biased mu-opioid receptor agonist, PZM21, was reported to be analgesic and possess reduced side effects. Here, we aimed to further investigate the behavioural and biochemical properties of PZM21. EXPERIMENTAL APPROACH: We evaluated antinociceptive effects of systemic and intrathecal PZM21 administration. Its addiction-like properties were determined using several behavioural approaches: conditioned place preference, locomotor sensitization, precipitated withdrawal and self-administration. Further, we assessed the influence of PZM21 on morphine-induced antinociception, tolerance and reward. Effects of PZM21 on striatal release of monoamines were evaluated using brain microdialysis. KEY RESULTS: PZM21 caused long-lasting dose-dependent antinociception. It did not induce reward- and reinforcement-related behaviour, however, its repeated administration led to antinociceptive tolerance and naloxone-precipitated withdrawal symptoms. Pretreatment with PZM21 enhanced morphine-induced antinociception and attenuated the expression of morphine reward. In comparison to morphine, PZM21 administration led to moderate release of dopamine and robust release of serotonin in the striatum. CONCLUSION AND IMPLICATIONS: PZM21 presents antinociceptive efficacy and does not possess rewarding or reinforcing properties. However, its clinical application may be restricted, as it induces tolerance and withdrawal symptoms. Notably, its ability to diminish morphine reward implicates that PZM21 may be useful in opioid use disorder therapy.

29/06/2019 | Neuropsychopharmacology   IF 7.2
Astrocytes determine conditioned response to morphine via glucocorticoid receptor-dependent regulation of lactate release.
Skupio U, Tertil M, Bilecki W, Barut J, Korostynski M, Golda S, Kudla L, Wiktorowska L, Sowa JE, Siwiec M, Bobula B, Pels K, Tokarski K, Hess G, Ruszczycki B, Wilczynski G, Przewlocki R

To date, neurons have been the primary focus of research on the role of glucocorticoids in the regulation of brain function and pathological behaviors, such as addiction. Astrocytes, which are also glucocorticoid-responsive, have been recently implicated in the development of drug abuse, albeit through as yet undefined mechanisms. Here, using a spectrum of tools (whole-transcriptome profiling, viral-mediated RNA interference in vitro and in vivo, behavioral pharmacology and electrophysiology), we demonstrate that astrocytes in the nucleus accumbens (NAc) are an important locus of glucocorticoid receptor (GR)-dependent transcriptional changes that regulate rewarding effects of morphine. Specifically, we show that targeted knockdown of the GR in the NAc astrocytes enhanced conditioned responses to morphine, with a concomitant inhibition of morphine-induced neuronal excitability and plasticity. Interestingly, GR knockdown did not influence sensitivity to cocaine. Further analyses revealed GR-dependent regulation of astroglial metabolism. Notably, GR knockdown inhibited induced by glucocorticoids lactate release in astrocytes. Finally, lactate administration outbalanced conditioned responses to morphine in GR knockdown mice. These findings demonstrate a role of GR-dependent regulation of astrocytic metabolism in the NAc and a key role of GR-expressing astrocytes in opioid reward processing.

28/11/2018 | Transl Psychiatry   IF 5.2
Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation.
Tertil M, Skupio U, Barut J, Dubovyk V, Wawrzczak-Bargiela A, Soltys Z, Golda S, Kudla L, Wiktorowska L, Szklarczyk K, Korostynski M, Przewlocki R, Slezak M

Stress elicits the release of glucocorticoids (GCs) that regulate energy metabolism and play a role in emotional memory. Astrocytes express glucocorticoid receptors (GR), but their contribution to cognitive effects of GC's action in the brain is unknown. To address this question, we studied how astrocyte-specific elimination of GR affects animal behavior known to be regulated by stress. Mice with astrocyte-specific ablation of GR presented impaired aversive memory expression in two different paradigms of Pavlovian learning: contextual fear conditioning and conditioned place aversion. These mice also displayed compromised regulation of genes encoding key elements of the glucose metabolism pathway upon GR stimulation. In particular, we identified that the glial, but not the neuronal isoform of a crucial stress-response molecule, Sgk1, undergoes GR-dependent regulation in vivo and demonstrated the involvement of SGK1 in regulation of glucose uptake in astrocytes. Together, our results reveal astrocytes as a central element in GC-dependent formation of aversive memory and suggest their relevance for stress-induced alteration of brain glucose metabolism. Consequently, astrocytes should be considered as a cellular target of therapies of stress-induced brain diseases.

11/2017 | Addict Biol   IF 4.2
Behavioral and transcriptional patterns of protracted opioid self-administration in mice.
Skupio U, Sikora M, Korostynski M, Wawrzczak-Bargiela A, Piechota M, Ficek J, Przewlocki R

Chronic exposure to opioids induces adaptations in brain function that lead to the formation of the behavioral and physiological symptoms of drug dependence and addiction. Animal models commonly used to test these symptoms typically last less than two weeks, which is presumably too short to observe the alterations in the brain that accompany drug addiction. Here, we analyzed the phenotypic and molecular effects of nearly lifelong morphine or saccharin intake in C57BL/6J mice. We used multiple paradigms to evaluate the symptoms of compulsive drug intake: a progressive ratio schedule, intermittent access and a schedule involving a risk of punishment were programmed into an automated IntelliCage system. Gene expression profiles were evaluated in the striatum using whole-genome microarrays and further validated using quantitative polymerase chain reaction in the striatum and the prefrontal cortex. Mice voluntary self-administering morphine showed addiction-related behavioral pattern that included: higher motivation to work for a drug reward, increased reward seeking and increased craving. The analysis of molecular changes revealed a tolerance effect in the transcriptional response to morphine injection (20 mg/kg, ip), as well as some long-lasting alterations in gene expression profiles between the analyzed groups of animals. Interestingly, among the morphine-drinking animals, certain transcriptional profiles were found to be associated with alterations in behavior. In conclusion, our model represents a novel approach for investigating the behavioral and molecular mechanisms underlying opioid addiction. Prolonged morphine intake caused adaptive processes in the brain that manifested as altered behavior and transcriptional sensitivity to opioids.

12/02/2015 | Neuroscience   IF 3.2
Behavioral and molecular alterations in mice resulting from chronic treatment with dexamethasone: relevance to depression.
Skupio U, Tertil M, Sikora M, Golda S, Wawrzczak-Bargiela A, Przewlocki R

Chronic stress, the administration of glucocorticoids and the prolonged activation of glucocorticoid receptors (GRs) are reported to induce affective changes in humans and rodents that resemble a depressive state. However, data concerning the behavioral and molecular effects of the selective activation of specific GRs are limited, and the conclusions derived remain debatable. In this study, our goal was to investigate the behavioral and molecular changes following the prolonged activation of GRs in mice via exposure to the specific agonist dexamethasone (DEX). C57BL/6J mice were injected daily with DEX (4 mg/kg, i.p.) or saline, and the behavior of the animals was assessed in the following paradigms: the forced swimming test (FST), the light-dark box test, the saccharin preference test and activity boxes. The mRNA expression levels of the corticosteroid receptors mineralocorticoid (MR, Nr3c2) and glucocorticoid (GR, Nr3c1), selected stress dependent genes and glial markers were analyzed in the prefrontal cortex, hippocampus and striatum. DEX-treated mice exhibited a variety of depression-like behaviors: increased time of immobility in the FST, a reduced preference for saccharin consumption and increased anxiety-like behavior. Behavioral alterations were accompanied by a decrease in the mRNA expression of GR and the increased expression of Fkbp5 and Sgk1 in the prefrontal cortex, hippocampus and striatum of DEX-treated mice. Furthermore, our results indicate a decrease in the mRNA expression of glutamate aspartate transporter (GLAST, Slc1a3), an astroglial cell marker, in the hippocampus and prefrontal cortex. These results demonstrate that the prolonged activation of GR receptors induced a depression-like state in mice, activated stress-related genes and induced a decrease in the mRNA expression of GLAST, an astroglial marker, in the prefrontal cortex and hippocampus. Together, the results reported here challenge several hypotheses concerning the role of GRs in the development of behavioral and molecular alterations relevant to stress-related disorders, such as depression, under the same experimental conditions.