Page personnelle

Federico MASSA

Post Doc

Phone : 33(0)5 57 57 37 45
Send an email

23 publication(s) since Février 1999:

Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in

The effect of some chemically modified cyclodextrins [namely, 2-hydroxypropyl-beta-, methyl-beta-, and 2-hydroxypropyl-gamma-cyclodextrin (HP-beta-CD, Me-beta-CD, and HP-gamma-CD, respectively)] on the aqueous solubility and dissolution rate of the hypnotic agent Zolpidem (ZP) was investigated. Solid complexes were prepared by freeze drying and characterized by infrared spectroscopy, X-ray powder diffraction, and differential scanning calorimetry. The solubility and dissolution rate of the drug were significantly improved by complexation with HP-beta-CD or Me-beta-CD. The structure of the inclusion complex ZP-HP-beta-CD in CH(3)COOD/D(2)O was investigated by (1)H and (13)C NMR spectroscopy, including NOE measurements. These measurements revealing a weak interaction between the tolyl moiety of the guest molecule and the HP-beta-CD cavity. The ataxic activity in rat was also investigated and it was found that ZP-HP-beta-CD and ZP-Me-beta-CD complexes showed almost 2-fold longer ataxic induction times than controls.

06/2000 | Mol Pharmacol   IF 4
Allopregnanolone synthesis in cerebellar granule cells: roles in regulation of GABA(A) receptor expression and function during progesterone treatment and withdrawal.
Follesa P, Serra M, Cagetti E, Pisu MG, Porta S, Floris S, Massa F, Sanna E, Biggio G

Rat cerebellar granule cells were cultured for 5 days with progesterone, resulting in the conversion of progesterone to allopregnanolone, a potent and efficacious modulator of gamma-aminobutyric acid (GABA) type-A receptors, as well as in decreases in the abundance of GABA(A) receptor alpha(1), alpha(3), alpha(5), and gamma(2) subunit mRNAs. These effects were accompanied by decreases in the efficacies of diazepam and the beta-carboline DMCM with regard to modulation of GABA-evoked Cl(-) currents. Withdrawal from such progesterone treatment resulted in a rapid and selective increase in the abundance of the GABA(A) alpha(4) subunit mRNA that was associated with a restoration of receptor sensitivity to the negative modulatory action of DMCM, a positive receptor response to flumazenil, and continued reduced responsiveness of receptors to diazepam. Prevention of allopregnanolone synthesis by the 5alpha-reductase inhibitor finasteride also prevented the changes in both GABA(A) receptor gene expression and receptor function elicited by progesterone treatment and withdrawal.

02/1999 | arzneimittelforschung   IF 0.8
Molecular and neurochemical evaluation of the effects of etizolam on GABAA receptors under normal and stress conditions.
Sanna E, Pau D, Tuveri F, Massa F, Maciocco E, Acquas C, Floris C, Fontana SN, Maira G, Biggio G

The thienobenzodiazepine derivative etizolam (CAS 40054-69-1, 6-(o-chlorophenyl)-8-ethyl-1-methyl-4H-s-triazolo-(3,4-c)thienol(1 ,4) diazepine) is a potent anxiolytic with a pharmacological profile similar to that of classical benzodiazepines. In order to rationalize the therapeutic use of etizolam, its pharmacodynamics properties on GABAA receptors were investigated by a comparative study with other ligands on human recombinant GABAA as well as rat brain native receptors. Etizolam inhibited in a concentration-dependent manner [3H]flunitrazepam (CAS 1622-62-4) binding to rat cortical membranes, with an affinity of 4.5 nmol/l greater than that of alprazolam (CAS 28981-97-7) (7.9 nmol/l). Ethizolam enhanced GABA-induced Cl- currents in oocytes expressing human cloned GABAA receptors. With alpha 1 beta 2 gamma 2S subunit combination, etizolam produced a 73% increase in GABA-induced currents with an EC50 of 92 nmol/l. At the same receptor type, alprazolam showed a higher degree of potentiation and potency (98%, EC50 56 nmol/l). At alpha 2 beta 2 gamma 2S or alpha 3 beta 2 gamma 2S subunit constructs, the effects of etizolam were similar to those of alprazolam. Flumazenil (CAS 78755-81-4) completely blocked both etizolam and alprazolam effects on GABA-induced currents. Etizolam, administered i.p., was uneffective in changing ex vivo t-[35S]butylbicyclophosphorothionate ([35S]-TBPS) binding to rat cerebral cortex, whereas alprazolam and abecarnil (CAS 111841-85-1) significantly reduced this parameter. However, etizolam similarly to abecarnil and alprazolam, antagonized isoniazid-induced increase (61%) in [35S]-TBPS binding to rat cortical membranes. Further, etizolam inhibited in a dose-dependent manner basal acetylcholine release from both hippocampus and prefrontal cortex, and reversed foot-shock-induced increase of basal acetylcholine release to a control level. Altogether, these results suggest that etizolam may have a reduced intrinsic activity, at least at specific subpopulations of GABAA receptors. This property, together with the pharmacokinetic indication of a short-acting drug, may characterize etizolam as a ligand endowed with less side-effects typical of full agonits such as diazepam (CAS 439-14-5) and alprazolam. Finally, given its marked efficacy under conditions of GABAergic deficit, etizolam may represent a possible drug of choice with reduced liability to produce tolerance and dependence after long-term treatment of anxiety and stress syndromes.