Page personnelle

Federico MASSA

Post Doc

Phone : 33(0)5 57 57 37 45
Send an email

23 publication(s) since Février 1999:

Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in

01/08/2008 | J Mol Med   IF 4.9
Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors.
Storr MA, Keenan CM, Emmerdinger D, Zhang H, Yüce B, Sibaev A, Massa F, Buckley NE, Lutz B, Göke B, Brand S, Patel KD, Sharkey KA


10/2007 | PLoS Biol   IF 9.2
Genetic dissection of behavioural and autonomic effects of Delta(9)-tetrahydrocannabinol in mice
Monory K, Blaudzun H, Massa F, Kaiser N, Lemberger T, Schutz G, Wotjak C T, Lutz B, Marsicano G

Marijuana and its main psychotropic ingredient Delta(9)-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release gamma aminobutyric acid), cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.

17/08/2006 | Neuron   IF 14.3
The endocannabinoid system controls key epileptogenic circuits in the hippocampus
Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein J L, Goebbels S, Nave K A, During M, Klugmann M, Wolfel B, Dodt H U, Zieglgansberger W, Wotjak C T, Mackie K, Elphick M R, Marsicano G, Lutz B

Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrate that the presence of CB1 receptors in glutamatergic hippocampal neurons is both necessary and sufficient to provide substantial endogenous protection against kainic acid (KA)-induced seizures. The direct endocannabinoid-mediated control of hippocampal glutamatergic neurotransmission may constitute a promising therapeutic target for the treatment of disorders associated with excessive excitatory neuronal activity.

06/2006 | J Mol Med   IF 4.9
CB1 and TRPV1 receptors mediate protective effects on colonic electrophysiological properties in mice
Sibaev A, Massa F, Yuce B, Marsicano G, Lehr H A, Lutz B, Goke B, Allescher H D, Storr M

CB1 and TRPV1 receptors modulate enteric neurotransmission and colonic inflammation. This study investigates early electrophysiological changes in distal colon of wild-type and receptor deficient mice after an inflammatory insult set by dinitrobenzene sulfonic acid (DNBS). Colitis was induced by DNBS in CB1(-/-) mice, TRPV1(-/-) mice, and their respective wild-type littermates. Electrophysiological properties consisting of membrane potentials and electrically induced inhibitory junction potentials (IJP) of circular smooth muscle cells were evaluated at different time points. Additionally a histological colitis severity score was evaluated in CB1(+/+) and CB1(-/-) mice 24 h after DNBS. Inflammation caused spontaneous atropine insensitive rhythmic action potentials in CB1(-/-) and TRPV1(-/-) mice but not in wild-type animals. This indicates that membrane stability is disturbed, which in turn indicates a lack of protective mechanisms. Focal electrical neuronal stimulation of the myenteric plexus induced IJP in the smooth muscle cells. Twenty-four hours after initiation of inflammation, the duration of the IJP is prolonged in all animals, indicating disturbances within neuromuscular interaction. In CB1(-/-) mice, it is interesting that the duration of IJP was significantly extended, as compared to CB1(+/+) mice pointing toward missing protective mechanisms in the CB1(-/-) mice. Inflammatory insults in the mouse colon induce reproducible changes in the electrophysiological properties and such changes correlate with duration of colitis. In mutants, these electrophysiological changes display different patterns, suggesting the lack of protective properties for neuromuscular interactions and membrane stability.

02/2006 | J Mol Med   IF 4.9
Vanilloid receptor (TRPV1)-deficient mice show increased susceptibility to dinitrobenzene sulfonic acid induced colitis
Massa F, Sibaev A, Marsicano G, Blaudzun H, Storr M, Lutz B

In the human colon, vanilloid receptor TRPV1 is overexpressed both in afferent nerve terminals and in epithelial cells during inflammation. In the past years, pharmacological experiments using TRPV1 agonists and antagonists revealed that TRPV1 receptors may play proinflammatory and protective roles in the gastrointestinal tract. Here, we applied a genetic approach to define the role of TRPV1 and analyzed the effects of dinitrobenzene sulfonic acid (DNBS)-induced colitis in TRPV1-deficient (TRPV1-/-) mice. Intrarectal infusion of DNBS induced increased inflammation in TRPV1-/- mice compared to wild-type littermates (TRPV1+/+) as evaluated by macroscopic scoring and myeloperoxidase assays. This finding indicates that TRPV1 receptors are required for the protection within sensory pathways that regulate the response following the initiation of colonic inflammation. Electrophysiological recordings from circular smooth-muscle cells, performed 8 and 24 h after DNBS treatment, revealed strong spontaneous oscillatory action potentials in TRPV1-/- but not in TRPV1+/+ colons, indicating an early TRPV1-mediated control of inflammation-induced irritation of smooth-muscle activities. These unexpected results suggest that TRPV1 receptors mediate endogenous protection against experimentally induced colonic inflammation.

2006 | J Endocrinol Invest   IF 3.2
Endocannabinoids and the gastrointestinal tract.
Massa F, Monory K

In the past centuries, different preparations of marijuana have been used for the treatment of gastrointestinal (GI) disorders, such as GI pain, gastroenteritis and diarrhea. Delta9-tetrahydrocannabinol (THC; the active component of marijuana), as well as endogenous and synthetic cannabinoids, exert their biological functions on the gastrointestinal tract by activating two types of cannabinoid receptors, cannabinoid type 1 receptor (CB1 receptor) and cannabinoid type 2 receptor (CB2 receptor). While CB1 receptors are located in the enteric nervous system and in sensory terminals of vagal and spinal neurons and regulate neurotransmitter release, CB2 receptors are mostly distributed in the immune system, with a role presently still difficult to establish. Under pathophysiological conditions, the endocannabinoid system conveys protection to the GI tract, eg from inflammation and abnormally high gastric and enteric secretion. For such protective activities, the endocannabinoid system may represent a new promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (eg, Crohn's disease), functional bowel diseases (eg, irritable bowel syndrome), and secretion- and motility-related disorders.


11/04/2004 | J Clin Invest   IF 13.3
The endogenous cannabinoid system protects against colonic inflammation.
Massa F*, Marsicano G*, et al.


13/09/2002 | Eur J Pharmacol   IF 3
Comparison of the effects of zaleplon, zolpidem, and triazolam at various GABA(A) receptor subtypes.
Sanna E, Busonero F, Talani G, Carta M, Massa F, Peis M, Maciocco E, Biggio G

The pyrazolopyrimidine zaleplon is a hypnotic agent that acts at the benzodiazepine recognition site of GABA(A) receptors. Zaleplon, like the hypnotic agent zolpidem but unlike classical benzodiazepines, exhibits preferential affinity for type I benzodiazepine (BZ(1)/omega(1)) receptors in binding assays. The modulatory action of zaleplon at GABA(A) receptors has now been compared with those of zolpidem and the triazolobenzodiazepine triazolam. Zaleplon potentiated GABA-evoked Cl(-) currents in Xenopus oocytes expressing human GABA(A) receptor subunits with a potency that was higher at alpha1beta2gamma2 receptors than at alpha2- or alpha3-containing receptors. Zolpidem, but not triazolam, also exhibited selectivity for alpha1-containing receptors. However, the potency of zaleplon at these various receptors was one-third to one-half that of zolpidem. Zaleplon and zolpidem also differed in their actions at receptors containing the alpha5 or gamma3 subunit. Zaleplon, zolpidem, and triazolam exhibited similar patterns of efficacy among the different receptor subtypes. The affinities of zaleplon for [(3)H]flunitrazepam or t-[(35)S]butylbicyclophosphorothionate ([(35)S]TBPS) binding sites in rat brain membranes were lower than those of zolpidem or triazolam. Furthermore, zaleplon, unlike zolpidem, exhibited virtually no affinity for the peripheral type of benzodiazepine receptor.

15/08/2001 | Brain Res Mol Brain Res   IF 2.8
Increase in expression of the GABA(A) receptor alpha(4) subunit gene induced by withdrawal of, but not by long-term treatment with, benzodiazepine full or partial agonists.
Follesa P, Cagetti E, Mancuso L, Biggio F, Manca A, Maciocco E, Massa F, Desole MS, Carta M, Busonero F, Sanna E, Biggio G

The effects of long-term exposure to, and subsequent withdrawal of, diazepam or imidazenil (full and partial agonists of the benzodiazepine receptor, respectively) on the abundance of GABA(A) receptor subunit mRNAs and peptides were investigated in rat cerebellar granule cells in culture. Exposure of cells to 10 microM diazepam for 5 days significantly reduced the amounts of alpha(1) and gamma(2) subunit mRNAs, and had no effect on the amount of alpha(4) mRNA. These effects were accompanied by a decrease in the levels of alpha(1) and gamma(2) protein and by a reduction in the efficacy of diazepam with regard to potentiation of GABA-evoked Cl- current. Similar long-term treatment with 10 microM imidazenil significantly reduced the abundance of only the gamma(2)S subunit mRNA and had no effect on GABA(A) receptor function. Withdrawal of diazepam or imidazenil induced a marked increase in the amount of alpha(4) mRNA; withdrawal of imidazenil also reduced the amounts of alpha(1) and gamma(2) mRNAs. In addition, withdrawal of diazepam or imidazenil was associated with a reduced ability of diazepam to potentiate GABA action. These data give new insights into the different molecular events related to GABA(A) receptor gene expression and function produced by chronic treatment and withdrawal of benzodiazepines with full or partial agonist properties.