Page personnelle


Phone : 33(0)5 57 57 37 56 / 33(0)5 57 57 37 61
Send an email

PhD à l'Institut Max-Planck de Munich (1997-2001)
Post-Doc, Institut Max-Planck, Munich (2001-2004)
CR1 Neurocentre Magendie, Bordeaux (2007)

113 publication(s) since Mars 2003:

Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in

09/2003 | Gastroenterology   IF 19.2
An endogenous cannabinoid tone attenuates cholera toxin-induced fluid accumulation in mice.
Izzo AA , Capasso F , Costagliola A , Bisogno T , Marsicano G , Ligresti A , Matias I , Capasso R , Pinto L , Borrelli F , Cecio A , Lutz B , Mascolo N , Di Marzo V

BACKGROUND & AIMS: Cholera toxin (CT) is the most recognizable enterotoxin causing secretory diarrhea, a major cause of infant morbidity and mortality throughout the world. In this study, we investigated the role of the endogenous cannabinoid system (i.e., the cannabinoid receptors and their endogenous ligands) in CT-induced fluid accumulation in the mouse small intestine. METHODS: Fluid accumulation was evaluated by enteropooling; endocannabinoid levels were measured by isotope-dilution gas chromatography mass spectrometry; CB(1) receptors were localized by immunohistochemistry and their messenger RNA (mRNA) levels were quantified by reverse-transcription polymerase chain reaction (PCR). RESULTS: Oral administration of CT to mice resulted in an increase in fluid accumulation in the small intestine and in increased levels of the endogenous cannabinoid, anandamide, and increased expression of the cannabinoid CB(1) receptor mRNA. The cannabinoid receptor agonist CP55,940 and the selective cannabinoid CB(1) receptor agonist arachidonoyl-chloro-ethanolamide inhibited CT-induced fluid accumulation, and this effect was counteracted by the CB(1) receptor antagonist SR141716A, but not by the CB(2) receptor antagonist SR144528. SR141716A, per se, but not the vanilloid VR1 receptor antagonist capsazepine, enhanced fluid accumulation induced by CT, whereas the selective inhibitor of anandamide cellular uptake, VDM11, prevented CT-induced fluid accumulation. CONCLUSIONS: These results indicate that CT, along with enhanced intestinal secretion, causes overstimulation of endocannabinoid signaling with an antisecretory role in the small intestine.

08/2003 | J Clin Invest   IF 12.3
The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis.
Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U

The cannabinoid receptor type 1 (CB1) and its endogenous ligands, the endocannabinoids, are involved in the regulation of food intake. Here we show that the lack of CB1 in mice with a disrupted CB1 gene causes hypophagia and leanness. As compared with WT (CB1+/+) littermates, mice lacking CB1 (CB1-/-) exhibited reduced spontaneous caloric intake and, as a consequence of reduced total fat mass, decreased body weight. In young CB1-/- mice, the lean phenotype is predominantly caused by decreased caloric intake, whereas in adult CB1-/- mice, metabolic factors appear to contribute to the lean phenotype. No significant differences between genotypes were detected regarding locomotor activity, body temperature, or energy expenditure. Hypothalamic CB1 mRNA was found to be coexpressed with neuropeptides known to modulate food intake, such as corticotropin-releasing hormone (CRH), cocaine-amphetamine-regulated transcript (CART), melanin-concentrating hormone (MCH), and preproorexin, indicating a possible role for endocannabinoid receptors within central networks governing appetite. CB1-/- mice showed significantly increased CRH mRNA levels in the paraventricular nucleus and reduced CART mRNA levels in the dorsomedial and lateral hypothalamic areas. CB1 was also detected in epidydimal mouse adipocytes, and CB1-specific activation enhanced lipogenesis in primary adipocyte cultures. Our results indicate that the cannabinoid system is an essential endogenous regulator of energy homeostasis via central orexigenic as well as peripheral lipogenic mechanisms and might therefore represent a promising target to treat diseases characterized by impaired energy balance.

03/2003 | Int J Obes Relat Metab Disord
Endogenous cannabinoid system as a modulator of food intake.
Cota D, Marsicano G, Lutz B, Vicennati V, Stalla GK, Pasquali R, Pagotto U

The ability of Cannabis sativa (marijuana) to increase hunger has been noticed for centuries, although intensive research on its molecular mode of action started only after the characterization of its main psychoactive component Delta(9)-tetrahydrocannabinol in the late 1960s. Despite the public concern related to the abuse of marijuana and its derivatives, scientific studies have pointed to the therapeutic potentials of cannabinoid compounds and have highlighted their ability to stimulate appetite, especially for sweet and palatable food. Later, the discovery of specific receptors and their endogenous ligands (endocannabinoids) suggested the existence of an endogenous cannabinoid system, providing a physiological basis for biological effects induced by marijuana and other cannabinoids. Epidemiological reports describing the appetite-stimulating properties of cannabinoids and the recent insights into the molecular mechanisms underlying cannabinoid action have proposed a central role of the cannabinoid system in obesity. The aim of this review is to provide an extensive overview on the role of this neuromodulatory system in feeding behavior by summarizing the most relevant data obtained from human and animal studies and by elucidating the interactions of the cannabinoid system with the most important neuronal networks and metabolic pathways involved in the control of food intake. Finally, a critical evaluation of future potential therapeutical applications of cannabinoid antagonists in the therapy of obesity and eating disorders will be discussed.