Page personnelle

Suzana KHODER




PhD

Phone :
Send an email








2 publication(s) since Février 2016:


Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in


24/01/2018 | Neuron   IF 14.4
Prefrontal-Periaqueductal Gray-Projecting Neurons Mediate Context Fear Discrimination.
Rozeske RR, Jercog D, Karalis N, Chaudun F, Khoder S, Girard D, Winke N, Herry C

Abstract:
Survival critically depends on selecting appropriate defensive or exploratory behaviors and is strongly influenced by the surrounding environment. Contextual discrimination is a fundamental process that is thought to depend on the prefrontal cortex to integrate sensory information from the environment and regulate adaptive responses to threat during uncertainty. However, the precise prefrontal circuits necessary for discriminating a previously threatening context from a neutral context remain unknown. Using a combination of single-unit recordings and optogenetic manipulations, we identified a neuronal subpopulation in the dorsal medial prefrontal cortex (dmPFC) that projects to the lateral and ventrolateral periaqueductal gray (l/vlPAG) and is selectively activated during contextual fear discrimination. Moreover, optogenetic activation and inhibition of this neuronal population promoted contextual fear discrimination and generalization, respectively. Our results identify a subpopulation of dmPFC-l/vlPAG-projecting neurons that control switching between different emotional states during contextual discrimination.




15/02/2016 | Nat Neurosci   IF 21.1
4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior.
Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C

Abstract:
Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological and optogenetic manipulations, we found that freezing, a behavioral expression of fear, temporally coincided with the development of sustained, internally generated 4-Hz oscillations in prefrontal-amygdala circuits. 4-Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4-Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behavior. These results unravel a sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behavior.