Page personnelle

Muriel KOEHL

Phone : 33(0)5 57 57 36 87
Send an email

46 publication(s) since Juin 1997:

Sort by

* equal contribution
The indicated IF have been collected by the Web of Sciences in

02/03/2012 | Cell   IF 31.4
Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD.
Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F, Koehl M, Abrous DN, Mendizabal-Zubiaga J, Grandes P, Liu Q, Bai G, Wang W, Xiong L, Ren W, Marsicano G, Zhang X

Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo.

02/2012 | Hippocampus   IF 4
Adult-born neurons are necessary for extended contextual discrimination.
Tronel S, Belnoue L, Grosjean N, Revest JM, Piazza PV, Koehl M, Abrous DN

New neurons are continuously produced in the adult dentate gyrus of the hippocampus. It has been shown that one of the functions of adult neurogenesis is to support spatial pattern separation, a process that transforms similar memories into nonoverlapping representations. This prompted us to investigate whether adult-born neurons are required for discriminating two contexts, i.e., for identifying a familiar environment and detect any changes introduced in it. We show that depleting adult-born neurons impairs the animal's ability to disambiguate two contexts after extensive training. These data suggest that the continuous production of new dentate neurons plays a crucial role in extracting and separating efficiently contextual representation in order to discriminate features within events.

19/04/2011 | Proc Natl Acad Sci U S A   IF 9.5
Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity.
Massa F, Koehl M, Wiesner T, Grosjean N, Revest JM, Piazza PV, Abrous DN, Oliet SH

Adult neurogenesis is a process by which the brain produces new neurons once development has ceased. Adult hippocampal neurogenesis has been linked to the relational processing of spatial information, a role attributed to the contribution of newborn neurons to long-term potentiation (LTP). However, whether newborn neurons also influence long-term depression (LTD), and how synaptic transmission and plasticity are affected as they incorporate their network, remain to be determined. To address these issues, we took advantage of a genetic model in which a majority of adult-born neurons can be selectively ablated in the dentate gyrus (DG) and, most importantly, in which neurogenesis can be restored on demand. Using electrophysiological recordings, we show that selective reduction of adult-born neurons impairs synaptic transmission at medial perforant pathway synapses onto DG granule cells. Furthermore, LTP and LTD are largely compromised at these synapses, probably as a result of an increased induction threshold. Whereas the deficits in synaptic transmission and plasticity are completely rescued by restoring neurogenesis, these synapses regain their ability to express LTP much faster than their ability to express LTD. These results demonstrate that both LTP and LTD are influenced by adult neurogenesis. They also indicate that as newborn neurons integrate their network, the ability to express bidirectional synaptic plasticity is largely improved at these synapses. These findings establish that adult neurogenesis is an important process for synaptic transmission and bidirectional plasticity in the DG, accounting for its role in efficiently integrating novel incoming information and in forming new memories.

03/2011 | Eur J Neurosci   IF 2.8
A new chapter in the field of memory: adult hippocampal neurogenesis.
Koehl M, Abrous DN

Understanding the cellular mechanisms underlying learning and memory is a major challenge in neurobiology. Structural and functional changes occurring in the hippocampus such as synaptic remodeling and long-term potentiation are key signatures of long-term memory processes. The discovery of a de novo hippocampal production of neurons in the adult brain has been a breakthrough in the field of plasticity and memory, introducing a new actor that could sustain memory processes. Here we will review our current knowledge on the role of these adult new neurons in memory. In particular we will provide evidence showing that they are required for learning and memory and that an alteration in their production rate or maturation leads to memory impairments. Through a thorough survey of the literature, we will also acknowledge that there are many controversies regarding the specific role played by newborn neurons. The emerging picture is that they are involved in the establishment of spatiotemporal relationships among multiple environmental cues for the flexible use of the acquired information. Indeed, newborn neurons have been found to be required for separating events based on their spatial and temporal characteristics, a process that preserves the uniqueness of a memory representation. Thus, adult-born neurons are required for allocentric space representation, for long-term memory retention and for flexible inferential memory expression. Finally, we will conclude by highlighting directions for future research, emphasizing that the exact participation of newborn neurons in memory processes will not be approached without considering the hippocampal network in general.

19/01/2011 | J Neurosci   IF 6
A critical time window for the recruitment of bulbar newborn neurons by olfactory discrimination learning.
Belnoue L, Grosjean N, Abrous DN, Koehl M

In the mammalian brain, the dentate gyrus and the olfactory bulb are regions where new neurons are continuously added. While the functional consequences of continuous hippocampal neurogenesis have been extensively studied, the role of olfactory adult-born neurons remains elusive. In particular, the involvement of these newborn neurons in odor processing is still a matter of debate. We demonstrate a critical impact of both the age of new neurons and the memory processes involved (learning vs recall) in the recruitment of newborn cells. Thus, odor stimulation preferentially recruited immature neurons over more mature ones (2 weeks old vs 5 and 9 weeks old), whereas associative learning based on odor discrimination preferentially recruited mature neurons (5-9 weeks old). Furthermore, while mature neurons were activated by this associative learning, they were not activated by long-term memory recall, indicating that the contribution of newborn neurons in olfactory functions depends also on the memory process involved. Our data thus show that newborn neurons are indeed involved in odor processing and that their recruitment is age- and memory process-dependent.

21/07/2010 | J Neurosci   IF 6
The planar polarity protein Scribble1 is essential for neuronal plasticity and brain function.
Moreau MM, Piguel N, Papouin T, Koehl M, Durand CM, Rubio ME, Loll F, Richard EM, Mazzocco C, Racca C, Oliet SH, Abrous DN, Montcouquiol M, Sans N

Scribble (Scrib) is a key regulator of apicobasal polarity, presynaptic architecture, and short-term synaptic plasticity in Drosophila. In mammals, its homolog Scrib1 has been implicated in cancer, neural tube closure, and planar cell polarity (PCP), but its specific role in the developing and adult nervous system is unclear. Here, we used the circletail mutant, a mouse model for PCP defects, to show that Scrib1 is located in spines where it influences actin cytoskeleton and spine morphing. In the hippocampus of these mutants, we observed an increased synapse pruning associated with an increased number of enlarged spines and postsynaptic density, and a decreased number of perforated synapses. This phenotype was associated with a mislocalization of the signaling pathway downstream of Scrib1, leading to an overall activation of Rac1 and defects in actin dynamic reorganization. Finally, Scrib1-deficient mice exhibit enhanced learning and memory abilities and impaired social behavior, two features relevant to autistic spectrum disorders. Our data identify Scrib1 as a crucial regulator of brain development and spine morphology, and suggest that Scrib1(crc/+) mice might be a model for studying synaptic dysfunction and human psychiatric disorders.

07/2010 | Exp Neurol   IF 4.5
CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.
Dubreucq S, Koehl M, Abrous DN, Marsicano G, Chaouloff F

Chronic voluntary wheel-running activity has been reported to hypersensitise central CB1 receptors in mice. On the other hand, pharmacological findings suggest that the CB1 receptor could be involved in wheel-running behaviour and in running-induced neurogenesis in the hippocampus. We analysed wheel-running behaviour for 6 weeks and measured its consequences on hippocampal neurogenesis in CB1 knockout (CB1(-/-)) animals, compared to wild-type (CB1(+/+)) littermates. Because wheel running has been shown to affect locomotor reactivity in novel environments, memory for aversive events and depression-like behaviours, we also assessed these behaviours in control and running CB1(+/+) and CB1(-/-) mice. When compared with running CB1(+/+) mice, the distance covered weekly by CB1(-/-) mice was decreased by 30-40%, an observation accounted for by decreased time spent and maximal velocity on the wheels. Analyses of running distances with respect to the light/dark cycle revealed that mutant covered less distance throughout both the inactive and the active phases of that cycle. Locomotion in an activity cage, exploration in an open field, and immobility time in the forced swim test proved insensitive to chronic wheel running in either genotype. Wheel running, per se, did not influence the expression and extinction of cued fear memory but counteracted in a time-dependent manner the deficiency of extinction measured in CB1(-/-) mice. Hippocampal neurogenesis, assessed by doublecortin labelling of immature neurons in the dentate gyrus, was lowered by 40% in control CB1(-/-) mice, compared to control CB1(+/+) mice. Although CB1(-/-) mice ran less than their wild-type littermates, the 6-week running protocol increased neurogenesis to similar extents (37-39%) in both genotypes. This study suggests that mouse CB1 receptors control wheel running but not its neurogenic consequences in the hippocampus.

10/2009 | Mol Psychiatry   IF 11.6
Adult hippocampal neurogenesis is involved in anxiety-related behaviors.
Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, Abrous DN

Adult hippocampal neurogenesis is a unique example of structural plasticity, the functional role of which has been a matter of intense debate. New transgenic models have recently shown that neurogenesis participates in hippocampus-mediated learning. Here, we show that transgenic animals, in which adult hippocampal neurogenesis has been specifically impaired, exhibit a striking increase in anxiety-related behaviors. Our results indicate that neurogenesis plays an important role in the regulation of affective states and could be the target of new treatments for anxiety disorders.

02/2009 | Eur J Neurosci   IF 2.8
Age-dependent effect of prenatal stress on hippocampal cell proliferation in female rats.
Koehl M, Lemaire V, Le Moal M, Abrous DN

Stressors occurring during pregnancy can alter the developmental trajectory of offspring and lead to, among other deleterious effects, cognitive deficits and hyperactivity of the hypothalamo-pituitary-adrenal axis. A recent feature of the prenatal stress (PS) model is its reported influence on structural plasticity in hippocampal formation, which sustains both cognitive functions and stress responsiveness. Indeed, we and others have previously reported that males exposed to stress in utero are characterized by a decrease in hippocampal cell proliferation, and consequently neurogenesis, from adolescence to senescence. Recent studies in females submitted to PS have reported conflicting results, ranging from no effect to a decrease in cell proliferation. We hypothesized that changes in cell proliferation in PS female rats are age dependent. To address this issue, we examined the impact of PS on hippocampal cell proliferation in juvenile, young, middle-aged and old females. As hypothesized, we found an age-dependent effect of PS in female rats as cell proliferation was significantly decreased only when animals reached senescence, a time when adrenal gland weight also increased. These data suggest that the deleterious effects of PS on hippocampal cell proliferation in females are either specific to senescence or masked during adulthood by protective factors.

07/2008 | Faseb J   IF 5.6
Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin.
Koehl M, Meerlo P, Gonzales D, Rontal A, Turek FW, Abrous DN

Adult hippocampal neurogenesis is influenced by a variety of stimuli, including exercise, but the mechanisms by which running affects neurogenesis are not yet fully understood. Because beta-endorphin, which is released in response to exercise, increases cell proliferation in vitro, we hypothesized that it could exert a similar effect in vivo and mediate the stimulatory effects of running on neurogenesis. We thus analyzed the effects of voluntary wheel-running on adult neurogenesis (proliferation, differentiation, survival/death) in wild-type and beta-endorphin-deficient mice. In wild-type mice, exercise promoted cell proliferation evaluated by sacrificing animals 24 h after the last 5-bromo-2'-deoxyuridine (BrdU) pulse and by using endogenous cell cycle markers (Ki67 and pH(3)). This was accompanied by an increased survival of 4-wk-old BrdU-labeled cells, leading to a net increase of neurogenesis. Beta-endorphin deficiency had no effect in sedentary mice, but it completely blocked the running-induced increase in cell proliferation; this blockade was accompanied by an increased survival of 4-wk-old cells and a decreased cell death. Altogether, adult neurogenesis was increased in response to exercise in knockout mice. We conclude that beta-endorphin released during running is a key factor for exercise-induced cell proliferation and that a homeostatic balance may regulate the final number of new neurons.