Neuronal circuits of associative learning
Principal investigator: Cyril Herry, PhD.
The main objective of our work is to identify the anatomical and physiological properties of prefrontal and tonsil excitatory neuronal circuits and inhibitors involved in the implementation and expression of Pavlovian associative learning. In particular, we use behavioural approaches associated with electrophysiological techniques of unit recordings of prefrontal neural activity in vigilous animals as well as optogenic approaches to manipulating specific neuronal populations.
En savoir
Researchers, teacher-researchers, hospital practitioners: Cyril Herry
Postdoctoral fellows: Cecilia Gonzalez-Campo; Thomas Welcome
Doctorants: Julien Courtin
Research axis: Synapse / Normal and pathological cognition
Research Themes (FENS): Cognition and Behaviour / Animal Cognition and Behaviour / Behavioural Pharmacology / Motivation and Motion / Neurological and Psychiatric Conditions
Scientific expertise: neural circuits / neural circuits / neocortical circuits ; prefrontal cortex ; tonsil; memory and memory system ; neural plasticity ; auditory conditioning of fear ; associative learning of appetizer type ; associative learning of aversive type ; extinction of conditional fear ; and
Technological expertise:quantitative analysis of animal behaviour; fear conditioning; electrophysiology in animals in behaviour and anaesthesia; pharmacology of memory memory; optogenetic memory
Keywords: conditioned fear / extinction / tonsil / prefrontal cortex
National and international collaborations: Pier Vincenzo Piazza - Véronique Deroche Gamonet (Bordeaux) / François Georges (Bordeaux) / Manuel Mameli (Paris) / Yann Humeau (Bordeaux) / Andreas Lüthi (Bäle) / Karim Nader (Montréal).
Financial Support: ERC starting grant-NEUROFEAR
Research project:
Our main research project concerns the identification of the functional, anatomical and physiological properties of neural circuits involved in controlling emotional responses to fear. This project is based on a very innovative multi-level approach that combines electrophysiological recording techniques, selective optogenic manipulations and behavioural approaches. In a first step we will examine the activation and connectivity of prefrontal excitatory and inhibitory circuits involved in the control of fear responses through the use of extracellular unit electrophysiological recordings and extracellular stimuli. In a second step, we will selectively manipulate these neural circuits during behaviour using optogenic approaches to test whether reversible activation or inhibition of neural activity within these circuits induces changes in the behavioural expression of fear responses. Finally, we will use intracellular recordings in the anesthetized animal to study the plasticity and anatomical properties of the prefrontal neural circuits involved in controlling fear behaviour. The results obtained will provide detailed knowledge of the cellular bases of fear behaviour in particular and behavioural control in general. In addition, the identification of neural circuits controlling fear behaviour should also allow the development of new therapeutic strategies for pathologies such as post-traumatic stress disorder and anxiety disorders.
Last publications
-
Neuronal coding mechanisms mediating fear behavior.
Rozeske RR, Herry C
10/2018
Curr Opin Neurobiol
; 52:60-64
Impact factor 6.541
The behavioral repertoire of an organism can be highly diverse, spanning from social to defensive. How an animal efficiently switches between distinct behaviors is a fundamental question whose inquiry
-
Prefrontal-Periaqueductal Gray-Projecting Neurons Mediate Context Fear Discrimination.
Rozeske RR, Jercog D, Karalis N, Chaudun F, Khoder S, Girard D, Winke N, Herry C
24/01/2018
Neuron .
Impact factor 14.318
Survival critically depends on selecting appropriate defensive or exploratory behaviors and is strongly influenced by the surrounding environment. Contextual discrimination is a fundamental process th
-
Temporal binding function of dorsal CA1 is critical for declarative memory formation.
Sellami A, Al Abed AS, Brayda-Bruno L, Etchamendy N, Valerio S, Oule M, Pantaleon L, Lamothe V, Potier M, Bernard K, Jabourian M, Herry C, Mons N, Piazza PV, Eichenbaum H, Marighetto A
19/09/2017
Proc Natl Acad Sci U S A ; 114(38):10262-10267
Impact factor 9.504
Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hi
-
Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.
Flores A, Herry C, Maldonado R, Berrendero F
01/08/2017
Int J Neuropsychopharmacol ; 20(8):654-659
Impact factor 3.981
Background: Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulat
-
Blood on the Tracks: Two Pathways for Predation.
Rozeske RR, Herry C
12/01/2017
Cell ; 168(1-2):17-19
Impact factor 31.398
Accurate predatory behavior requires coordination between pursuit activity and prey consumption, yet the underlying neuronal circuits are unknown. A novel study published in this issue of Cell identif
Team members
Cyril HERRY
Team leader
Cyril DEJEAN
Researcher
Thomas BIENVENU
Guest researcher
Ha Rang KIM
Guest researcher
Tom BROYER
ITA
Claire FRANCIONI
ITA
Delphine GIRARD
ITA
Valentine LE GALL
ITA
Domitille RAJOT
ITA
Daniel JERCOG
Post Doc
Suzana KHODER
Post Doc
Mario MARTIN-FERNANDEZ
Post Doc
Marianne AINCY
PhD
Pierre FEUGAS
PhD
Juliette VIELLARD
PhD
Nanci WINKE
PhD