Neurocentre Magendie

Les publications de l'équipe







IF du Neurocentre
IF1234567891011121314151617181920253035404550
Nombre00572501100003003000027000
%001419614033000080080000619000


38 publications

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en Juin 2016



21/07/2016 | Nature   IF 38.1
Prefrontal neuronal assemblies temporally control fear behaviour.
Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TC, Herry C

Abstract:
Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses.





09/06/2016 | Nature   IF 38.1
Midbrain circuits for defensive behaviour.
Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, Wolff SB, Ramakrishnan C, Fenno L, Deisseroth K, Herry C, Arber S, Luthi A

Abstract:
Survival in threatening situations depends on the selection and rapid execution of an appropriate active or passive defensive response, yet the underlying brain circuitry is not understood. Here we use circuit-based optogenetic, in vivo and in vitro electrophysiological, and neuroanatomical tracing methods to define midbrain periaqueductal grey circuits for specific defensive behaviours. We identify an inhibitory pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal grey that produces freezing by disinhibition of ventrolateral periaqueductal grey excitatory outputs to pre-motor targets in the magnocellular nucleus of the medulla. In addition, we provide evidence for anatomical and functional interaction of this freezing pathway with long-range and local circuits mediating flight. Our data define the neuronal circuitry underlying the execution of freezing, an evolutionarily conserved defensive behaviour, which is expressed by many species including fish, rodents and primates. In humans, dysregulation of this 'survival circuit' has been implicated in anxiety-related disorders.





15/02/2016 | Nat Neurosci   IF 16.7
4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior.
Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C

Abstract:
Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological and optogenetic manipulations, we found that freezing, a behavioral expression of fear, temporally coincided with the development of sustained, internally generated 4-Hz oscillations in prefrontal-amygdala circuits. 4-Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4-Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behavior. These results unravel a sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behavior.





01/09/2015 | Biol Psychiatry   IF 8.9
Neuronal Circuits for Fear Expression and Recovery: Recent Advances and Potential Therapeutic Strategies.
Dejean C, Courtin J, Rozeske RR, Bonnet MC, Dousset V, Michelet T, Herry C

Abstract:
Recent technological developments, such as single unit recordings coupled to optogenetic approaches, have provided unprecedented knowledge about the precise neuronal circuits contributing to the expression and recovery of conditioned fear behavior. These data have provided an understanding of the contributions of distinct brain regions such as the amygdala, prefrontal cortex, hippocampus, and periaqueductal gray matter to the control of conditioned fear behavior. Notably, the precise manipulation and identification of specific cell types by optogenetic techniques have provided novel avenues to establish causal links between changes in neuronal activity that develop in dedicated neuronal structures and the short and long-lasting expression of conditioned fear memories. In this review, we provide an update on the key neuronal circuits and cell types mediating conditioned fear expression and recovery and how these new discoveries might refine therapeutic approaches for psychiatric conditions such as anxiety disorders and posttraumatic stress disorder.





16/06/2015 | Neuroscience   IF 3.2
Preventing long-lasting fear recovery using bilateral alternating sensory stimulation: A translational study.
Wurtz H, El-Khoury-Malhame M, Wilhelm FH, Michael T, Beetz EM, Roques J, Reynaud E, Courtin J, Khalfa S, Herry C

Abstract:
Posttraumatic stress disorder (PTSD) is a highly debilitating and prevalent psychological disorder. It is characterized by highly distressing intrusive trauma memories that are partly explained by fear conditioning. Despite efficient therapeutic approaches, a subset of PTSD patients displays spontaneous recurrence of traumatic memories after successful treatment. The development of animal behavioral models mimicking the individual variability in treatment outcome for PTSD patients represent therefore an important challenge as it allows for the identification of predicting factors of resilience or susceptibility to relapse. However, to date, only few animal behavioral models of long-lasting fear recovery have been developed and their predictive validity has not been tested directly. The objectives of this study were twofold. First we aimed to develop a simple animal behavioral model of long-lasting fear recovery based on auditory cued fear conditioning and extinction learning, which recapitulates the heterogeneity of fear responses observed in PTSD patients after successful treatment. Second we aimed at testing the predictive validity of our behavioral model and used to this purpose a translational approach based (i) on the demonstration of the efficiency of Eye Movement Desensitization and Reprocessing (EMDR) therapy to reduce conditioned fear responses in PTSD patients and (ii) on the implementation in our behavioral model of an electrical bilateral alternating stimulation of the eyelid which mimics the core feature of EMDR. Our data indicate that electrical bilateral alternating stimulation of the eyelid during extinction learning alleviates long-lasting fear recovery of conditioned fear responses and dramatically reduces inter-individual variability. These results demonstrate the face and predictive validity of our animal behavioral model and provide an interesting tool to understand the neurobiological underpinnings of long-lasting fear recovery.





12/2014 | Nat Neurosci   IF 16.7
Encoding of fear learning and memory in distributed neuronal circuits.
Herry C, Johansen JP

Abstract:
How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory.





11/2014 | Med Sci (Paris)
[Prefrontal parvalbumin-expressing interneurons control fear behavior].
Courtin J, Dejean C, Herry C



07/10/2014 | Genes Brain Behav   IF 3.3
Prefrontal neuronal circuits of contextual fear conditioning.
Rozeske RR, Valerio S, Chaudun F, Herry C

Abstract:
Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories.





22/05/2014 | Nature   IF 38.1
Amygdala interneuron subtypes control fear learning through disinhibition.
Wolff SB, Grundemann J, Tovote P, Krabbe S, Jacobson GA, Muller C, Herry C, Ehrlich I, Friedrich RW, Letzkus JJ, Luthi A

Abstract:
Learning is mediated by experience-dependent plasticity in neuronal circuits. Activity in neuronal circuits is tightly regulated by different subtypes of inhibitory interneurons, yet their role in learning is poorly understood. Using a combination of in vivo single-unit recordings and optogenetic manipulations, we show that in the mouse basolateral amygdala, interneurons expressing parvalbumin (PV) and somatostatin (SOM) bidirectionally control the acquisition of fear conditioning--a simple form of associative learning--through two distinct disinhibitory mechanisms. During an auditory cue, PV(+) interneurons are excited and indirectly disinhibit the dendrites of basolateral amygdala principal neurons via SOM(+) interneurons, thereby enhancing auditory responses and promoting cue-shock associations. During an aversive footshock, however, both PV(+) and SOM(+) interneurons are inhibited, which boosts postsynaptic footshock responses and gates learning. These results demonstrate that associative learning is dynamically regulated by the stimulus-specific activation of distinct disinhibitory microcircuits through precise interactions between different subtypes of local interneurons.





17/03/2014 | Neuropsychopharmacology   IF 7.8
Frequency of Cocaine Self-Administration Influences Drug Seeking in the Rat: Optogenetic Evidence for a Role of the Prelimbic Cortex.
Martin-Garcia E, Courtin J, Renault P, Fiancette JF, Wurtz H, Simonnet A, Levet F, Herry C, Deroche-Gamonet V

Abstract:
High-frequency intake and high drug-induced seeking are associated with cocaine addiction in both human and animals. However, their relationships and neurobiological underpinnings remain hypothetical. The medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and nucleus accumbens (NAc) have been shown to have a role in cocaine seeking. However, their involvement in regulating high-frequency intake and high cocaine-induced seeking is unclear. We manipulated frequency of cocaine self-administration and investigated whether it influenced cocaine seeking. The contribution of the aforementioned structures was evaluated using changes in expression of the immediate early gene c-Fos and targeted optogenetic manipulations. Rats that self-administered at High frequency (short inter-infusion intervals allowed by short time-out) showed higher cocaine-induced seeking than low frequency rats (long inter-infusions intervals imposed by long time-out), as measured with cocaine-induced reinstatement. c-Fos was enhanced in High frequency rats in the prelimbic (PL) and infralimbic (IL) areas of the mPFC, the BLA, and the NAc core and shell. Correlational analysis of c-Fos revealed that the PL was a critical node strongly correlated with both the IL and NAc core in High frequency rats. Targeted optogenetic inactivation of the PL decreased cocaine-induced reinstatement, but increased cocaine self-administration, in High frequency rats. In contrast, optogenetic activation of the PL had no effect on Low frequency rats. Thus, high-frequency intake promotes a PL-dependent control of cocaine seeking, with the PL exerting a facilitatory or inhibitory effect, depending on operant contingencies. Individual differences in cocaine-induced PL activation might be a source of vulnerability for poorly controlled cocaine-induced seeking and/or cocaine intake.Neuropsychopharmacology advance online publication, 16 April 2014; doi:10.1038/npp.2014.66.