Neurocentre Magendie

Team publications

IF du Neurocentre

82 publications

* equal contribution
The indicated IF have been collected by the Web of Sciences in June 2016

12/11/2016 | Brain Behav Immun   IF 5.9
Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis.
Planche V, Panatier A, Hiba B, Ducourneau EG, Raffard G, Dubourdieu N, Maitre M, Leste-Lasserre T, Brochet B, Dousset V, Desmedt A, Oliet SH, Tourdias T

Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis.

06/2016 | data brief
Effects of glia metabolism inhibition on nociceptive behavioral testing in rats.
Lefevre Y, Amadio A, Vincent P, Descheemaeker A, Oliet SH, Dallel R, Voisin DL

Fluoroacetate has been widely used to inhibit glia metabolism in vivo. It has yet to be shown what the effects of chronic intrathecal infusion of fluoroacetate on nociceptive behavioral testing are. The effects of chronic infusion of fluoroacetate (5 nmoles/h) for 2 weeks were examined in normal rats. Chronic intrathecal fluoroacetate did not alter mechanical threshold (von Frey filaments), responses to supra-threshold mechanical stimuli (von Frey filaments), responses to hot (hot plate) or cool (acetone test) stimuli and did not affect motor performance of the animals, which was tested with rotarod. This suggests that fluoroacetate at appropriate dose did not suppress neuronal activity in the spinal cord.

Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

13/07/2015 | Neurosci Lett   IF 2.1
Neuropathic pain depends upon d-serine co-activation of spinal NMDA receptors in rats.
Lefevre Y, Amadio A, Vincent P, Descheemaeker A, Oliet SH, Dallel R, Voisin DL

Activation of N-methyl-d-aspartate (NMDA) receptors is critical for hypersensitivity in chronic neuropathic pain. Since astroglia can regulate NMDA receptor activation by releasing the NMDA receptor co-agonist d-serine, we investigated the role of NMDA receptor and d-serine in neuropathic chronic pain. Male Wistar rats underwent right L5-L6 spinal nerve ligation or sham surgery and were tested for mechanical allodynia and hyperalgesia after 14 days. Acute intrathecal administration of the NMDA receptor antagonist AP-5 as well as chronic administration of the glia metabolism inhibitor fluoroacetate significantly reduced mechanical allodynia in neuropathic rats. The effect of fluoroacetate was reversed by acutely administered intrathecal d-serine. Degrading d-serine using acute intrathecal administration of d-aminoacid oxidase also reduced pain symptoms. Immunocytochemistry showed that about 70% of serine racemase, the synthesizing enzyme of d-serine, was expressed in astrocyte processes in the superficial laminae of L5 dorsal horn. Serine racemase expression was upregulated in astrocyte processes in neuropathic rats compared to sham rats. These results show that neuropathic pain depends upon glial d-serine that co-activates spinal NMDA receptors.

02/2015 | Nat Neurosci   IF 16.7
Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission.
Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B, Baufreton J, Groc L, Oliet SH

Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission.

05/12/2014 | j proteome res   IF 4.2
Proteomic analysis of gliosomes from mouse brain: identification and investigation of glial membrane proteins.
Carney KE, Milanese M, van Nierop P, Li KW, Oliet SH, Smit AB, Bonanno G, Verheijen MH

Astrocytes are being increasingly recognized as crucial contributors to neuronal function at synapses, axons, and somas. Reliable methods that can provide insight into astrocyte proteins at the neuron-astrocyte functional interface are highly desirable. Here, we conducted a mass spectrometry analysis of Percoll gradient-isolated gliosomes, a viable preparation of glial subcellular particles often used to study mechanisms of astrocytic transmitter uptake and release and their regulation. Gliosomes were compared with synaptosomes, a preparation containing the neurotransmitter release machinery, and, accordingly, synaptosomes were enriched for proteins involved in synaptic vesicle-mediated transport. Interestingly, gliosome preparations were found to be enriched for different classes of known astrocyte proteins, such as VAMP3 (involved in astrocyte exocytosis), Ezrin (perisynaptic astrocyte cytoskeletal protein), and Basigin (astrocyte membrane glycoprotein), as well as for G-protein-mediated signaling proteins. Mass spectrometry data are available via ProteomeXchange with the identifier PXD001375. Together, these data provide the first detailed description of the gliosome proteome and show that gliosomes can be a useful preparation to study glial membrane proteins and associated processes.

19/10/2014 | Philos Trans R Soc Lond B Biol Sci   IF 5.1
Organization, control and function of extrasynaptic NMDA receptors.
Papouin T, Oliet SH

N-methyl D-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors.

28/03/2014 | Neuroscience   IF 3.2
Cannabinoid type-1 receptors in the paraventricular nucleus of the hypothalamus inhibit stimulated food intake.
Soria-Gomez E, Massa F, Bellocchio L, Rueda-Orozco PE, Ciofi P, Cota D, Oliet SH, Prospero-Garcia O, Marsicano G

Cannabinoid receptor type 1 (CB1)-dependent signaling in the brain is known to modulate food intake. Recent evidence has actually shown that CB1 can both inhibit and stimulate food intake in fasting/refeeding conditions, depending on the specific neuronal circuits involved. However, the exact brain sites where this bimodal control is exerted and the underlying neurobiological mechanisms are not fully understood yet. Using pharmacological and electrophysiological approaches, we show that local CB1 blockade in the paraventricular nucleus of the hypothalamus (PVN) increases fasting-induced hyperphagia in rats. Furthermore, local CB1 blockade in the PVN also increases the orexigenic effect of the gut hormone ghrelin in animals fed ad libitum. At the electrophysiological level, CB1 blockade in slices containing the PVN potentiates the decrease of the activity of PVN neurons induced by long-term application of ghrelin. Hence, the PVN is (one of) the site(s) where signals associated with the body's energy status determine the direction of the effects of endocannabinoid signaling on food intake.

19/02/2014 | Neuron   IF 14
Gliotransmitters travel in time and space.
Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A

The identification of the presence of active signaling between astrocytes and neurons in a process termed gliotransmission has caused a paradigm shift in our thinking about brain function. However, we are still in the early days of the conceptualization of how astrocytes influence synapses, neurons, networks, and ultimately behavior. In this Perspective, our goal is to identify emerging principles governing gliotransmission and consider the specific properties of this process that endow the astrocyte with unique functions in brain signal integration. We develop and present hypotheses aimed at reconciling confounding reports and define open questions to provide a conceptual framework for future studies. We propose that astrocytes mainly signal through high-affinity slowly desensitizing receptors to modulate neurons and perform integration in spatiotemporal domains complementary to those of neurons.

11/02/2014 | Nat Commun   IF 11.3
Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction.
Israel JM, Cabelguen JM, Le Masson G, Oliet SH, Ciofi P

The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-alpha. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.