Neurocentre Magendie

Umberto SPAMPINATO




Enseignant-Chercheur

Tél : 33(0)5 57 57 37 57
Envoyer un email








34 publication(s) depuis Mars 1995:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


31/05/2016 | Neuropharmacology   IF 4.9
Differential control of dopamine ascending pathways by serotonin2B receptor antagonists: New opportunities for the treatment of schizophrenia.
Devroye C, Cathala A, Haddjeri N, Rovera R, Vallee M, Drago F, Piazza PV, Spampinato U

Abstract:
Recent studies suggest that the central serotonin2B receptor (5-HT2BR) could be an interesting pharmacological target for treating neuropsychiatric disorders related to dopamine (DA) dysfunction, such as schizophrenia. Thus, the present study was aimed at characterizing the role of 5-HT2BRs in the control of ascending DA pathway activity. Using neurochemical, electrophysiological and behavioral approaches, we assessed the effects of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on in vivo DA outflow in DA-innervated regions, on mesencephalic DA neuronal firing, as well as in behavioral tests predictive of antipsychotic efficacy and tolerability, such as phencyclidine (PCP)-induced deficit in novel object recognition (NOR) test, PCP-induced hyperlocomotion and catalepsy. Both RS 127445 (0.16 mg/kg, i.p.) and LY 266097 (0.63 mg/kg, i.p.) increased DA outflow in the medial prefrontal cortex (mPFC). RS 127445, devoid of effect in the striatum, decreased DA outflow in the nucleus accumbens, and potentiated haloperidol (0.1 mg/kg, s.c.)-induced increase in mPFC DA outflow. Also, RS 127445 decreased the firing rate of DA neurons in the ventral tegmental area, but had no effect in the substantia nigra pars compacta. Finally, both RS 127445 and LY 266097 reversed PCP-induced deficit in NOR test, and reduced PCP-induced hyperlocomotion, without inducing catalepsy. These results demonstrate that 5-HT2BRs exert a differential control on DA pathway activity, and suggest that 5-HT2BR antagonists could represent a new class of drugs for improved treatment of schizophrenia, with an ideal profile of effects expected to alleviate cognitive and positive symptoms, without eliciting extrapyramidal symptoms.




27/11/2015 | Neuropsychopharmacology   IF 7.8
Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.
Martin-Garcia E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutierrez-Rodriguez A, Reguero L, Fiancette JF, Grandes P, Spampinato U, Maldonado R, Piazza PV, Marsicano G, Deroche-Gamonet V

Abstract:
The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine-seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.Neuropsychopharmacology accepted article preview online, 27 November 2015. doi:10.1038/npp.2015.351.




25/06/2015 | Neuropharmacology   IF 4.9
Central serotonin receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.
Devroye C, Cathala A, Di Marco B, Caraci F, Drago F, Piazza PV, Spampinato U

Abstract:
The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction.




01/11/2014 | Neuropharmacology   IF 4.9
Serotonin receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow.
Devroye C, Cathala A, Maitre M, Piazza PV, Abrous DN, Revest JM, Spampinato U

Abstract:
The serotonin2C receptor (5-HT2CR) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT2CRs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT2CR agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT2CR antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT2CRs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum.




Abstract:
In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity.




03/01/2014 | Science   IF 34.7
Pregnenolone can protect the brain from cannabis intoxication.
Vallee M, Vitiello S, Bellocchio L, Hebert-Chatelain E, Monlezun S, Martin-Garcia E, Kasanetz F, Baillie GL, Panin F, Cathala A, Roullot-Lacarriere V, Fabre S, Hurst DP, Lynch DL, Shore DM, Deroche-Gamonet V, Spampinato U, Revest JM, Maldonado R, Reggio PH, Ross RA, Marsicano G, Piazza PV

Get Full Text on Science
Abstract:
Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Delta(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.




10/2013 | Exp Brain Res   IF 2.1
Serotonin2C receptors and drug addiction: focus on cocaine.
Devroye C, Filip M, Przegalinski E, McCreary AC, Spampinato U

Abstract:
This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.




03/2012 | J Pharmacol Toxicol Methods
Coupled intracerebral microdialysis and electrophysiology for the assessment of dopamine neuron function in vivo.
Panin F, Cathala A, Piazza PV, Spampinato U

Abstract:
INTRODUCTION: The central dopaminergic system is involved in the pathophysiology of several neuropsychiatric disorders. Intracerebral microdialysis and electrophysiology provide two powerful techniques to investigate dopamine (DA) function and the mechanism of action of psychotropic drugs in vivo. METHODS: Here, we developed a protocol allowing the combined measurement of neurochemical and electrical activities of the nigrostriatal and mesoaccumbens DA pathways, by coupling in vivo microdialysis and electrophysiology in the same isoflurane-anesthetized animal. DA neuron firing rate and burst firing were measured in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), whereas extracellular levels of DA and its main metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were monitored in the striatum and the nucleus accumbens (NAc). The validity of the protocol was assessed using various drugs known to modify DA neuron activity in vivo. RESULTS: The peripheral administration of the DA-D2 agonist quinpirole decreased SNc DA neuron firing rate and burst firing, as well as DA and DOPAC outflow in the rat striatum. Opposite effects were observed after the peripheral administration of the DA-D2 antagonist haloperidol. In rats and mice, the peripheral administration of cocaine elicited a decrease in VTA DA neuron firing rate and burst firing, and an increase in accumbal DA outflow, paralleled by a reduction in DOPAC outflow. DISCUSSION: The obtained results, confirming previous electrophysiological and microdialysis studies, demonstrate that this protocol provides a suitable method for the study of DA neuron function and the mechanism of action of psychotropic drugs in the living brain of both rats and mice.




07/06/2010 | J Neurochem   IF 3.8
The central serotonin(2B) receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity.
Auclair AL, Cathala A, Sarrazin F, Depoortère R, Piazza PV, Newman-Tancredi A, Spampinato U

Abstract:





Abstract:
Control of the mesoaccumbens dopamine (DA) pathway by central serotonin(2C) receptors (5-HT(2C)Rs) involves different 5-HT(2C)R populations located within multiple brain areas. Here, using in vivo microdialysis in halothane-anesthetized rats, we assessed the role of medial prefrontal cortex (mPFC) 5-HT(2C)Rs in the control of basal and activated accumbal DA outflow, to identify the modalities of their recruitment and the role of 5-HT(2C)R constitutive activity. Intra-mPFC injection of the 5-HT(2C)R inverse agonist SB 206553 (0.5 microg/0.2 microL), without effect by itself, decreased accumbal DA outflow induced by morphine (2.5-10 mg/kg, s.c.), haloperidol (0.01 mg/kg, s.c.) or GBR 12909 (2.5 mg/kg, i.p.). Conversely, intra-mPFC injection of the 5-HT(2C)R antagonist SB 242084 (0.5 microg/0.2 microL), without effect by itself, decreased the effect of 10 mg/kg morphine, the only drug enhancing basal 5-HT outflow in the mPFC. The inhibitory effect of SB 206553 on 2.5 mg/kg morphine-stimulated DA outflow was suppressed by the concomitant intra-mPFC injection of SB 242084. Finally, changes of basal DA outflow induced by the 5-HT(2C)R agonist Ro 60-0175 (3 mg/kg, i.p.) or SB 206553 (5 mg/kg, i.p.) were unaffected by intra-mPFC injection of SB 242084. These results, showing that 5-HT(2C)R antagonist and inverse agonist behave differently in vivo, demonstrate that mPFC 5-HT(2C)Rs facilitate activated accumbal DA outflow and that 5-HT(2C)R constitutive activity participates in this interaction.