Neurocentre Magendie

Laurie ROBIN




Doctorant

Tél : 33(0)5 57 57 37 89
Envoyer un email



Expertise: CB1R, Astrocytes , Behavior, Pharmacology, Memory





2 publication(s) depuis Mai 2015:


Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en


09/11/2016 | Nature   IF 38.1
A cannabinoid link between mitochondria and memory.
Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, Zottola AC, Delamarre A, Cannich A, Vincent P, Varilh M, Robin LM, Terral G, Garcia-Fernandez MD, Colavita M, Mazier W, Drago F, Puente N, Reguero L, Elezgarai I, Dupuy JW, Cota D, Lopez-Rodriguez ML, Barreda-Gomez G, Massa F, Grandes P, Benard G, Marsicano G

Abstract:
Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Galphai protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.




09/05/2015 | Neuroscience   IF 3.2
Astroglial type-1 cannabinoid receptors (CB): A new player in the tripartite synapse.
Oliveira da Cruz JF, Robin LM, Drago F, Marsicano G, Metna-Laurent M

Abstract:
The endocannabinoid system is an important regulator of physiological functions. In the brain, this control is mainly exerted through the type-1-cannabinoid (CB1) receptors. CB1 receptors are abundant at neuron terminals where their stimulation inhibits neurotransmitter release. However, CB1 receptors are also expressed in astrocytes and recent studies showed that astroglial cannabinoid signalling is a key element of the tripartite synapse. In this review we discuss the different mechanisms by which astroglial CB1 receptors control synaptic transmission and plasticity. The recent involvement of astroglial CB1 receptors in the effects of cannabinoids on memory highlights their key roles in cognitive processes and further indicates that astrocytes are central active elements of high order brain functions.