Neurocentre Magendie


1 publication(s) depuis Septembre 2011:

Trier par

* equal contribution
Les IF indiqués ont été collectés par le Web of Sciences en

21/09/2011 | J Neurosci   IF 5.9
Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds.
Mondin M, Labrousse V, Hosy E, Heine M, Tessier B, Levet F, Poujol C, Blanchet C, Choquet D, Thoumine O

The mechanisms governing the recruitment of functional glutamate receptors at nascent excitatory postsynapses following initial axon-dendrite contact remain unclear. We examined here the ability of neurexin/neuroligin adhesions to mobilize AMPA-type glutamate receptors (AMPARs) at postsynapses through a diffusion/trap process involving the scaffold molecule PSD-95. Using single nanoparticle tracking in primary rat and mouse hippocampal neurons overexpressing or lacking neuroligin-1 (Nlg1), a striking inverse correlation was found between AMPAR diffusion and Nlg1 expression level. The use of Nlg1 mutants and inhibitory RNAs against PSD-95 demonstrated that this effect depended on intact Nlg1/PSD-95 interactions. Furthermore, functional AMPARs were recruited within 1 h at nascent Nlg1/PSD-95 clusters assembled by neurexin-1beta multimers, a process requiring AMPAR membrane diffusion. Triggering novel neurexin/neuroligin adhesions also caused a depletion of PSD-95 from native synapses and a drop in AMPAR miniature EPSCs, indicating a competitive mechanism. Finally, both AMPAR level at synapses and AMPAR-dependent synaptic transmission were diminished in hippocampal slices from newborn Nlg1 knock-out mice, confirming an important role of Nlg1 in driving AMPARs to nascent synapses. Together, these data reveal a mechanism by which membrane-diffusing AMPARs can be rapidly trapped at PSD-95 scaffolds assembled at nascent neurexin/neuroligin adhesions, in competition with existing synapses.